论文标题

学习图像重建的多尺度卷积词典

Learning Multiscale Convolutional Dictionaries for Image Reconstruction

论文作者

Liu, Tianlin, Chaman, Anadi, Belius, David, Dokmanić, Ivan

论文摘要

卷积神经网络(CNN)在解决成像逆问题方面取得了巨大成功。为了了解他们的成功,有效的策略是构建更简单,更数学上更可行的卷积稀疏编码(CSC)模型,该模型与CNN共享基本成分。但是,现有的CSC方法在挑战性的反问题中表现不佳。我们假设性能差距可以部分归因于它们如何在不同的空间尺度上处理图像:尽管许多CNN使用多尺度特征表示,但现有的CSC模型主要依赖于单尺度词典。为了缩小性能差距,我们提出了一个多尺度卷积词典结构。所提出的字典结构源自U-NET,可以说是图像到图像学习问题最广泛,最广泛使用的CNN。我们表明,将拟议的多尺度词典纳入其他标准的CSC框架中,可以在包括CT和MRI重建在内的一系列具有挑战性的反问题中与最先进的CNN竞争性能。因此,我们的工作证明了多尺度CSC方法在解决具有挑战性的反问题方面的有效性和可扩展性。

Convolutional neural networks (CNNs) have been tremendously successful in solving imaging inverse problems. To understand their success, an effective strategy is to construct simpler and mathematically more tractable convolutional sparse coding (CSC) models that share essential ingredients with CNNs. Existing CSC methods, however, underperform leading CNNs in challenging inverse problems. We hypothesize that the performance gap may be attributed in part to how they process images at different spatial scales: While many CNNs use multiscale feature representations, existing CSC models mostly rely on single-scale dictionaries. To close the performance gap, we thus propose a multiscale convolutional dictionary structure. The proposed dictionary structure is derived from the U-Net, arguably the most versatile and widely used CNN for image-to-image learning problems. We show that incorporating the proposed multiscale dictionary in an otherwise standard CSC framework yields performance competitive with state-of-the-art CNNs across a range of challenging inverse problems including CT and MRI reconstruction. Our work thus demonstrates the effectiveness and scalability of the multiscale CSC approach in solving challenging inverse problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源