论文标题

通过机器学习的快速IR下降估算

Fast IR Drop Estimation with Machine Learning

论文作者

Xie, Zhiyao, Li, Hai, Xu, Xiaoqing, Hu, Jiang, Chen, Yiran

论文摘要

红外降低约束是几乎所有芯片设计中强制执行的基本要求。但是,它的评估需要很长时间,用于解决违规行为的缓解技术可能需要大量迭代。因此,快速准确的IR下降预测对于减少设计周转时间至关重要。最近,由于其在许多领域的承诺和成功,已经对机器学习(ML)技术进行了积极研究以进行快速ir降低估算。这些研究在各种设计阶段的目标是不同的重点,因此,采用和定制了不同的ML算法。本文对基于ML的IR下降估计技术的最新进展进行了评论。它还可以作为讨论电子设计自动化(EDA)应用程序面临的一些普遍挑战的工具,并演示了如何将ML模型与常规技术集成,以提高EDA工具的效率。

IR drop constraint is a fundamental requirement enforced in almost all chip designs. However, its evaluation takes a long time, and mitigation techniques for fixing violations may require numerous iterations. As such, fast and accurate IR drop prediction becomes critical for reducing design turnaround time. Recently, machine learning (ML) techniques have been actively studied for fast IR drop estimation due to their promise and success in many fields. These studies target at various design stages with different emphasis, and accordingly, different ML algorithms are adopted and customized. This paper provides a review to the latest progress in ML-based IR drop estimation techniques. It also serves as a vehicle for discussing some general challenges faced by ML applications in electronics design automation (EDA), and demonstrating how to integrate ML models with conventional techniques for the better efficiency of EDA tools.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源