论文标题

补丁VQ:“修补”视频质量问题

Patch-VQ: 'Patching Up' the Video Quality Problem

论文作者

Ying, Zhenqiang, Mandal, Maniratnam, Ghadiyaram, Deepti, Bovik, Alan

论文摘要

No-Reference(NR)感知视频质量评估(VQA)是社交和流媒体应用程序的复杂,未解决且重要的问题。需要高效,准确的视频质量预测指标来监视和指导数十亿共享(通常不完美的用户生成内容)(UGC)的处理。不幸的是,当前的NR模型在现实世界中的“野外” UGC视频数据上的预测功能受到限制。为了提高此问题的进展,我们创建了最大的(迄今为止)主观视频质量数据集,其中包含39、000次现实世界扭曲的视频和117、00000个时空局部视频补丁('v-Patches')和550万人的人类感知质量注释。使用此功能,我们创建了两个唯一的NR-VQA模型:(a)基于本地到全球区域的NR VQA体系结构(称为PVQ),学会了预测3个UGC数据集上的全球视频质量和最先进的性能,以及(b)优先的A-KIND时空质量质量映射引擎(称为PVQ Mapper和可视化的空间)。我们将在审核过程之后立即提供新的数据库和预测模型。

No-reference (NR) perceptual video quality assessment (VQA) is a complex, unsolved, and important problem to social and streaming media applications. Efficient and accurate video quality predictors are needed to monitor and guide the processing of billions of shared, often imperfect, user-generated content (UGC). Unfortunately, current NR models are limited in their prediction capabilities on real-world, "in-the-wild" UGC video data. To advance progress on this problem, we created the largest (by far) subjective video quality dataset, containing 39, 000 realworld distorted videos and 117, 000 space-time localized video patches ('v-patches'), and 5.5M human perceptual quality annotations. Using this, we created two unique NR-VQA models: (a) a local-to-global region-based NR VQA architecture (called PVQ) that learns to predict global video quality and achieves state-of-the-art performance on 3 UGC datasets, and (b) a first-of-a-kind space-time video quality mapping engine (called PVQ Mapper) that helps localize and visualize perceptual distortions in space and time. We will make the new database and prediction models available immediately following the review process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源