论文标题
量子设备的纯相超薄纳米线的原位外观
In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices
论文作者
论文摘要
具有均匀和无缺陷晶体界面的混合半导体 - 渗透率INAS-AL纳米线是寻求Majorana零模式(MZMS)中最有希望的候选者之一。然而,INAS纳米线通常表现出高密度的随机分布的双胞胎缺陷和堆叠断层,从而导致不受控制和不均匀的INAS-AL界面。此外,这种类型的疾病会在电线中造成潜在的不均匀性,破坏拓扑间隙,并形成模仿MZM在运输实验中的琐碎的亚间隙状态。进一步的研究表明,从生长中降低INAS纳米线直径可以显着抑制这些缺陷和堆叠断层的形成。在这里,我们证明了通过分子束外延和外在膜膜的超薄inas纳米线的原位生长。我们的INAS直径(〜30 nm)仅是文献中常用的直径(〜100 nm)的三分之一。超薄的inas纳米线是各种不同生长方向的纯相晶体,表明疾病水平较低。透射电子显微镜证实了Al壳和INAS线之间的原子锋利和均匀的界面。这些设备上的量子运输研究解决了零磁场的硬诱导超导间隙和$ 2E^ - $ 2E^ - 周期性的库仑阻塞,这是将来MZM实验的必要步骤。观察到一个较大的零偏置电导峰值,峰高达到$ 2E^2/h $的80%。
Hybrid semiconductor-superconductor InAs-Al nanowires with uniform and defect-free crystal interfaces are one of the most promising candidates used in the quest for Majorana zero modes (MZMs). However, InAs nanowires often exhibit a high density of randomly distributed twin defects and stacking faults, which result in an uncontrolled and non-uniform InAs-Al interface. Furthermore, this type of disorder can create potential inhomogeneity in the wire, destroy the topological gap, and form trivial sub-gap states mimicking MZM in transport experiments. Further study shows that reducing the InAs nanowire diameter from growth can significantly suppress the formation of these defects and stacking faults. Here, we demonstrate the in situ growth of ultra-thin InAs nanowires with epitaxial Al film by molecular-beam epitaxy. Our InAs diameter (~ 30 nm) is only one-third of the diameters (~ 100 nm) commonly used in literatures. The ultra-thin InAs nanowires are pure phase crystals for various different growth directions, suggesting a low level of disorder. Transmission electron microscopy confirms an atomically sharp and uniform interface between the Al shell and the InAs wire. Quantum transport study on these devices resolves a hard induced superconducting gap and $2e^-$ periodic Coulomb blockade at zero magnetic field, a necessary step for future MZM experiments. A large zero bias conductance peak with a peak height reaching 80% of $2e^2/h$ is observed.