论文标题

改进的转移模型:随机转移机器

An Improved Transfer Model: Randomized Transferable Machine

论文作者

Wei, Pengfei, Qu, Xinghua, Ong, Yew Soon, Ma, Zejun

论文摘要

基于特征的转移是转移学习的最有效方法之一。现有的研究通常假定学习的新功能表示为\ emph {域名},因此在源域上训练传输模型$ \ Mathcal {M} $。在本文中,我们考虑了一个更现实的场景,其中新功能表示次优,而在域之间仍然存在小差异。我们提出了一个称为随机转移机(RTM)的新传输模型,以处理如此小的域差异。具体来说,我们研究了从现有基于功能的传输方法中汲取的新来源和目标数据。关键的想法是通过使用一些噪音随机损坏新的源数据,然后训练转移模型$ \ widetilde {\ Mathcal {m}} $,从而扩大源培训数据群体,然后在所有损坏的源数据群上执行良好的效果。原则上,损坏越多,构造的源数据群可以涵盖新目标数据的概率越高,因此可以通过$ \ widetilde {\ natercal {m}} $来实现更好的传输性能。一个理想的情况是无限腐败,但是现实中是不可行的。我们开发了一个边缘化的解决方案,该解决方案能够训练$ \ widetilde {\ Mathcal {m}} $,而无需进行任何损坏,但可以使用无限源噪声数据群体进行训练。我们进一步提出了两个$ \ widetilde {\ Mathcal {m}} $的实例化,从理论上讲,它们比传统传输模型$ \ MATHCAL {M} $显示了传输优势。更重要的是,两种实例化都具有封闭式解决方案,从而导致快速有效的培训过程。在各种现实世界转移任务上进行的实验表明,RTM是一个有希望的转移模型。

Feature-based transfer is one of the most effective methodologies for transfer learning. Existing studies usually assume that the learned new feature representation is \emph{domain-invariant}, and thus train a transfer model $\mathcal{M}$ on the source domain. In this paper, we consider a more realistic scenario where the new feature representation is suboptimal and small divergence still exists across domains. We propose a new transfer model called Randomized Transferable Machine (RTM) to handle such small divergence of domains. Specifically, we work on the new source and target data learned from existing feature-based transfer methods. The key idea is to enlarge source training data populations by randomly corrupting the new source data using some noises, and then train a transfer model $\widetilde{\mathcal{M}}$ that performs well on all the corrupted source data populations. In principle, the more corruptions are made, the higher the probability of the new target data can be covered by the constructed source data populations, and thus better transfer performance can be achieved by $\widetilde{\mathcal{M}}$. An ideal case is with infinite corruptions, which however is infeasible in reality. We develop a marginalized solution that enables to train an $\widetilde{\mathcal{M}}$ without conducting any corruption but equivalent to be trained using infinite source noisy data populations. We further propose two instantiations of $\widetilde{\mathcal{M}}$, which theoretically show the transfer superiority over the conventional transfer model $\mathcal{M}$. More importantly, both instantiations have closed-form solutions, leading to a fast and efficient training process. Experiments on various real-world transfer tasks show that RTM is a promising transfer model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源