论文标题

较高维度的全息传送

Holographic teleportation in higher dimensions

论文作者

Ahn, Byoungjoon, Ahn, Yongjun, Bak, Sang-Eon, Jahnke, Viktor, Kim, Keun-Young

论文摘要

我们在Rindler-Ads/CFT的背景下研究更高尺寸的可穿越虫洞。可以将纯广告几何形状的双曲线切片视为拓扑黑洞,这是双曲线空间中共形场理论双重的。最大扩展的几何形状包含两个由虫洞连接的外部区域(AD的Rindler楔子)。我们表明,这种虫洞可以通过双重痕量变形侵犯散装中的平均空能状况(ANEC)的双重变形。我们找到了一种分析公式的ANEC违规公式,该公式将Gao-Jafferis-Wall结果推广到较高的情况下,我们表明使用Eikonal近似可以获得相同的结果。我们表明,随着我们增加时空的维度,可以通过虫洞传输的信息量迅速减少。我们还计算了一个双面换向器,该换向器可以诊断遍历性,并表明在某些条件下,通过虫洞传播的信息用蝴蝶速度$ v_b = \ frac {1} {1} {d-1} $。

We study higher-dimensional traversable wormholes in the context of Rindler-AdS/CFT. The hyperbolic slicing of a pure AdS geometry can be thought of as a topological black hole that is dual to a conformal field theory in the hyperbolic space. The maximally extended geometry contains two exterior regions (the Rindler wedges of AdS) which are connected by a wormhole. We show that this wormhole can be made traversable by a double trace deformation that violates the average null energy condition (ANEC) in the bulk. We find an analytic formula for the ANEC violation that generalizes Gao-Jafferis-Wall result to higher-dimensional cases, and we show that the same result can be obtained using the eikonal approximation. We show that the bound on the amount of information that can be transferred through the wormhole quickly reduces as we increase the dimensionality of spacetime. We also compute a two-sided commutator that diagnoses traversability and show that, under certain conditions, the information that is transferred through the wormhole propagates with butterfly speed $v_B = \frac{1}{d-1}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源