论文标题

在紧凑的第四阶有限差分方案上

On compact 4th order finite-difference schemes for the wave equation

论文作者

Zlotnik, Alexander, Kireeva, Olga

论文摘要

我们考虑针对$ n $二维非均匀波方程的第四近似值问题(IBVP)的第四近似值(IBVP)的紧凑型有限差异方案,$ n \ geq 1 $。它们的构造是通过基于等式的平均方法的经典Numerov方法和替代技术来实现的,同时还需要进一步改进$ n \ geq 2 $的出现计划。该替代技术适用于其他类型的PDE,包括抛物线和时间依赖的Schrödinger。这些方案在每个空间方向和时间上都是隐性的,三分是三点,并在$ n \ geq 2 $中包含一个带有分裂操作员的方案。对于$ n = 1 $和特征的网格,第四阶方案变得明确并接近确切的四点方案。我们提出了一个有条件的稳定性定理,该定理涵盖了在强和弱的能量规范中相对于初始函数和方程式中的自由项的稳定性。它的推论可确保在平滑解决方案的IBVP的情况下绑定的第四阶误差。主要方案被概括用于非均匀的矩形网格。我们还给出了数值实验的结果,显示了三个规范的差异依赖性,这是对初始函数的弱平滑度以及在非平滑案例中第二个近似顺序方案的弱平滑度以及自由项和基本优势的敏感依赖性。

We consider compact finite-difference schemes of the 4th approximation order for an initial-boundary value problem (IBVP) for the $n$-dimensional non-homogeneous wave equation, $n\geq 1$. Their construction is accomplished by both the classical Numerov approach and alternative technique based on averaging of the equation, together with further necessary improvements of the arising scheme for $n\geq 2$. The alternative technique is applicable to other types of PDEs including parabolic and time-dependent Schrödinger ones. The schemes are implicit and three-point in each spatial direction and time and include a scheme with a splitting operator for $n\geq 2$. For $n=1$ and the mesh on characteristics, the 4th order scheme becomes explicit and close to an exact four-point scheme. We present a conditional stability theorem covering the cases of stability in strong and weak energy norms with respect to both initial functions and free term in the equation. Its corollary ensures the 4th order error bound in the case of smooth solutions to the IBVP. The main schemes are generalized for non-uniform rectangular meshes. We also give results of numerical experiments showing the sensitive dependence of the error orders in three norms on the weak smoothness order of the initial functions and free term and essential advantages over the 2nd approximation order schemes in the non-smooth case as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源