论文标题

迈向黑暗图像的快速和轻巧的恢复

Towards Fast and Light-Weight Restoration of Dark Images

论文作者

Lamba, Mohit, Balaji, Atul, Mitra, Kaushik

论文摘要

在黑暗和接近零勒克斯的条件下捕获高质量图像的能力一直是对计算机视觉社区的长期追求。 Chen等人的开创性作品。 [5]特别引起了对这一领域的新兴趣,从而在其工作之上产生了方法,以改善重建。但是,对于在边缘设备(例如嵌入式系统,监视摄像头,自动驾驶机器人和智能手机)等边缘设备上使用低光增强算法的实用性和部署,该解决方案必须尊重其他约束,例如有限的GPU内存和处理能力。考虑到这一点,我们提出了一个深层的神经网络体系结构,旨在在网络延迟,内存利用率,模型参数和重建质量之间取得平衡。关键思想是禁止在高分辨率(HR)空间中进行计算,并将其限制为低分辨率(LR)空间。但是,在LR空间中进行大部分计算会导致恢复图像中的伪影。因此,我们提出了包装和打开包装操作,这使我们能够有效地在人力资源和LR空间之间过境,而不会在恢复的图像中产生大量伪像。我们表明,我们可以增强完整的分辨率,即2848 x 4256,即使在CPU上,也可以在3秒钟内出现极黑的单像。我们以较少的模型参数,2-3倍的记忆利用率,5-20x的速度降低2-7倍,但与最先进的算法相比,保持竞争性图像重建质量。

The ability to capture good quality images in the dark and near-zero lux conditions has been a long-standing pursuit of the computer vision community. The seminal work by Chen et al. [5] has especially caused renewed interest in this area, resulting in methods that build on top of their work in a bid to improve the reconstruction. However, for practical utility and deployment of low-light enhancement algorithms on edge devices such as embedded systems, surveillance cameras, autonomous robots and smartphones, the solution must respect additional constraints such as limited GPU memory and processing power. With this in mind, we propose a deep neural network architecture that aims to strike a balance between the network latency, memory utilization, model parameters, and reconstruction quality. The key idea is to forbid computations in the High-Resolution (HR) space and limit them to a Low-Resolution (LR) space. However, doing the bulk of computations in the LR space causes artifacts in the restored image. We thus propose Pack and UnPack operations, which allow us to effectively transit between the HR and LR spaces without incurring much artifacts in the restored image. We show that we can enhance a full resolution, 2848 x 4256, extremely dark single-image in the ballpark of 3 seconds even on a CPU. We achieve this with 2 - 7x fewer model parameters, 2 - 3x lower memory utilization, 5 - 20x speed up and yet maintain a competitive image reconstruction quality compared to the state-of-the-art algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源