论文标题

对角线线性浓度模型的相互最大似然度

Reciprocal maximum likelihood degrees of diagonal linear concentration models

论文作者

Eur, Christopher, Fife, Tara, Samper, José Alejandro, Seynnaeve, Tim

论文摘要

我们表明,对角线线性浓度模型$ \ Mathcal l \ subseteq \ Mathbb {C}^n $等于$(-2)^rχ_m(\ textStyLele \ frac \ frac {$ frac {$ n of termiate)与$ \ Mathcal l $相关的Matroid $ m $。特别是,这为一般对角线线性浓度模型建立了RMLD的多项式性,积极回答了Sturmfels,Timme和Zwiernik的问题。

We show that the reciprocal maximal likelihood degree (rmld) of a diagonal linear concentration model $\mathcal L \subseteq \mathbb{C}^n$ of dimension $r$ is equal to $(-2)^rχ_M( \textstyle\frac{1}{2})$, where $χ_M$ is the characteristic polynomial of the matroid $M$ associated to $\mathcal L$. In particular, this establishes the polynomiality of the rmld for general diagonal linear concentration models, positively answering a question of Sturmfels, Timme, and Zwiernik.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源