论文标题
亚谐波功能,保形度量和CAT(0)
Subharmonic Functions, Conformal Metrics, and CAT(0)
论文作者
论文摘要
我们提供了一个分析证明,表明某些天然公平均覆盖物是Hadamard度量空间。特别是,如果$ρ=φ\ circ u $,其中$ u $是本地Lipschitz和$ω$的subharmonic,$φ$是积极的,并且在包含$ u(ω)$的间隔中增加,$ \logφ$ convex,并且如果衡量标准$(ω,ρ(ρ(Z)| dz | DZ | DZ | DZ | DZ | DZ) $(\tildeΩ,\ tilde {d})$,这是哈达玛的空间,地球仪具有Lipschitz连续的第一衍生物。
We present an analytical proof that certain natural metric planar universal covers are Hadamard metric spaces. In particular if $ρ=φ\circ u$ where $u$ is locally Lipschitz and subharmonic in $Ω$, $φ$ is positive and increasing on an interval containing $u(Ω)$ with $\logφ$ convex, and if the metric space $(Ω,ρ(z)|dz|)$ is complete, then it has universal cover $(\tildeΩ,\tilde{d})$ which is a Hadamard space for which geodesics have Lipschitz continuous first derivatives.