论文标题

对应修剪的可学习运动连贯性

Learnable Motion Coherence for Correspondence Pruning

论文作者

Liu, Yuan, Liu, Lingjie, Lin, Cheng, Dong, Zhen, Wang, Wenping

论文摘要

运动相干性是将真实对应与假的相干对应区分开的重要线索。在稀疏推定对应关系上建模运动相干性是由于其稀疏性和分布不均匀的。现有运动连贯性的作品对参数设置很敏感,并且难以处理复杂的运动模式。在本文中,我们介绍了一个名为Laplacian运动相干网络(LMCNET)的网络,以学习对应关系的运动相干属性。我们提出了一种在对应关系上具有平滑函数的拟合相干运动的新型公式,并表明该公式允许通过图Laplacian进行封闭形式的解决方案。这种封闭形式的解决方案使我们能够在学习框架中设计一个可区分的层,以从推定的对应关系中捕获全局运动连贯性。全局运动相干性与另一个局部层提取的局部相干性进一步结合,以鲁棒检测嵌入式对应关系。实验表明,在相对摄像头姿势估计和动态场景的对应关系中,LMCNET具有优于艺术的性能。

Motion coherence is an important clue for distinguishing true correspondences from false ones. Modeling motion coherence on sparse putative correspondences is challenging due to their sparsity and uneven distributions. Existing works on motion coherence are sensitive to parameter settings and have difficulty in dealing with complex motion patterns. In this paper, we introduce a network called Laplacian Motion Coherence Network (LMCNet) to learn motion coherence property for correspondence pruning. We propose a novel formulation of fitting coherent motions with a smooth function on a graph of correspondences and show that this formulation allows a closed-form solution by graph Laplacian. This closed-form solution enables us to design a differentiable layer in a learning framework to capture global motion coherence from putative correspondences. The global motion coherence is further combined with local coherence extracted by another local layer to robustly detect inlier correspondences. Experiments demonstrate that LMCNet has superior performances to the state of the art in relative camera pose estimation and correspondences pruning of dynamic scenes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源