论文标题
低资源神经机器翻译的动态课程学习
Dynamic Curriculum Learning for Low-Resource Neural Machine Translation
论文作者
论文摘要
近年来,大量数据使神经机器翻译(NMT)取得了巨大成功。但是,如果我们在小规模的语料库上训练这些模型,这仍然是一个挑战。在这种情况下,使用数据的方式似乎更为重要。在这里,我们研究了低资源NMT的有效使用培训数据。特别是,我们提出了一种动态课程学习(DCL)方法,以在培训中重新排序培训样本。与以前的工作不同,我们不使用静态评分功能进行重新排序。取而代之的是,训练样本的顺序通过两种方式动态确定 - 损失下降和模型能力。通过强调简单的样本,当前模型具有足够的能力学习,从而减轻了培训。我们在基于变压器的系统中测试DCL方法。实验结果表明,DCL在三个低资源机器翻译基准和WMT'16 EN-DE的不同大小的数据上的表现优于几个强基线。
Large amounts of data has made neural machine translation (NMT) a big success in recent years. But it is still a challenge if we train these models on small-scale corpora. In this case, the way of using data appears to be more important. Here, we investigate the effective use of training data for low-resource NMT. In particular, we propose a dynamic curriculum learning (DCL) method to reorder training samples in training. Unlike previous work, we do not use a static scoring function for reordering. Instead, the order of training samples is dynamically determined in two ways - loss decline and model competence. This eases training by highlighting easy samples that the current model has enough competence to learn. We test our DCL method in a Transformer-based system. Experimental results show that DCL outperforms several strong baselines on three low-resource machine translation benchmarks and different sized data of WMT' 16 En-De.