论文标题
Lévy-walk-like langevin动力学受时间依赖力的影响
Lévy-walk-like Langevin dynamics affected by a time-dependent force
论文作者
论文摘要
莱维(LévyWalk)是一个流行,更“物理”模型,用于描述超级延伸现象,因为它的速度有限。粒子的运动几乎在任何时间和任何地方都受到外部电势的影响。在本文中,我们建立了一个Langevin系统,并结合了一个下属,以描述时间依赖性的周期性力场中的Lévy步行。检测和仔细分析了外力的效果,包括非零的第一时刻(即使力是周期性的),在粒子位置上增加了额外的分散,对集合和时间平均均值位移的一致影响等等。此外,还获得了广义的klein-kramers方程,而不是仅获得时间依赖时间依赖性的klein-kramers方程。
Lévy walk is a popular and more `physical' model to describe the phenomena of superdiffusion, because of its finite velocity. The movements of particles are under the influences of external potentials almost at anytime and anywhere. In this paper, we establish a Langevin system coupled with a subordinator to describe the Lévy walk in the time-dependent periodic force field. The effects of external force are detected and carefully analyzed, including nonzero first moment (even though the force is periodic), adding an additional dispersion on the particle position, the consistent influence on the ensemble- and time-averaged mean-squared displacement, etc. Besides, the generalized Klein-Kramers equation is obtained, not only for the time-dependent force but also for space-dependent one.