论文标题

无反向传播的光子网络中的Monadic Pavlovian关联学习

Monadic Pavlovian associative learning in a backpropagation-free photonic network

论文作者

Tan, James Y. S., Cheng, Zengguang, Feldmann, Johannes, Li, Xuan, Youngblood, Nathan, Ali, Utku E., Wright, C. David, Pernice, Wolfram H. P., Bhaskaran, Harish

论文摘要

一个多世纪以前,伊万·帕夫洛夫(Ivan P. Pavlov)在经典实验中展示了狗如何学会将铃铛与食物联系起来,从而导致戒指导致唾液。如今,即使其他学习概念,尤其是对人工神经网络(ANN)的反向传播,也很难找到用于人工智能(AI)应用的Pavlovian类型的关联学习。但是,使用反向传播方法的训练在“常规” ANN上,尤其是现代深神经网络(DNNS)的形式,是计算和能量密集型的。在这里,我们在实验上展示了一种使用单个(或单一)关联硬件元素的无反向传播学习形式。我们在集成的光子平台上使用相位变换材料与芯片级联方向耦合器相结合。然后,我们使用我们的Monadic Pavlovian光子硬件开发扩展的电路网络,该硬件基于单元素关联提供独特的机器学习框架,重要的是,重要的是,使用无反向传播的架构来解决一般学习任务。我们的方法通过在传统的神经网络方法中学习来减少施加的计算负担,从而提高速度,同时还提供了我们光子实现固有的更高带宽。

Over a century ago, Ivan P. Pavlov, in a classic experiment, demonstrated how dogs can learn to associate a ringing bell with food, thereby causing a ring to result in salivation. Today, it is rare to find the use of Pavlovian type associative learning for artificial intelligence (AI) applications even though other learning concepts, in particular backpropagation on artificial neural networks (ANNs) have flourished. However, training using the backpropagation method on 'conventional' ANNs, especially in the form of modern deep neural networks (DNNs), is computationally and energy intensive. Here we experimentally demonstrate a form of backpropagation-free learning using a single (or monadic) associative hardware element. We realize this on an integrated photonic platform using phase-change materials combined with on-chip cascaded directional couplers. We then develop a scaled-up circuit network using our monadic Pavlovian photonic hardware that delivers a distinct machine-learning framework based on single-element associations and, importantly, using backpropagation-free architectures to address general learning tasks. Our approach reduces the computational burden imposed by learning in conventional neural network approaches, thereby increasing speed, whilst also offering higher bandwidth inherent to our photonic implementation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源