论文标题
基于自适应在线学习的概率负载预测
Probabilistic Load Forecasting Based on Adaptive Online Learning
论文作者
论文摘要
负载预测对于多个能源管理任务(例如计划发电能力,计划供应和需求以及最小化能源贸易成本)至关重要。由于可再生能源,电动汽车和微电网的整合,近年来,这种相关性的提高了更多。传统的负载预测技术通过利用过去负载需求的消费模式来获得单值负载预测。但是,这种技术无法评估负载需求中的内在不确定性,也无法捕获消费模式的动态变化。为了解决这些问题,本文介绍了一种基于隐藏的马尔可夫模型的自适应在线学习的概率负载预测的方法。我们提出了具有理论保证的学习和预测技术,并在多种情况下对其表现进行了实验评估。特别是,我们开发自适应在线学习技术,以递归更新模型参数,并使用最新参数获得概率预测的顺序预测技术。使用与具有不同大小并显示各种时变消耗模式的区域相对应的多个数据集评估该方法的性能。结果表明,所提出的方法可以显着提高各种场景的现有技术的性能。
Load forecasting is crucial for multiple energy management tasks such as scheduling generation capacity, planning supply and demand, and minimizing energy trade costs. Such relevance has increased even more in recent years due to the integration of renewable energies, electric cars, and microgrids. Conventional load forecasting techniques obtain single-value load forecasts by exploiting consumption patterns of past load demand. However, such techniques cannot assess intrinsic uncertainties in load demand, and cannot capture dynamic changes in consumption patterns. To address these problems, this paper presents a method for probabilistic load forecasting based on the adaptive online learning of hidden Markov models. We propose learning and forecasting techniques with theoretical guarantees, and experimentally assess their performance in multiple scenarios. In particular, we develop adaptive online learning techniques that update model parameters recursively, and sequential prediction techniques that obtain probabilistic forecasts using the most recent parameters. The performance of the method is evaluated using multiple datasets corresponding with regions that have different sizes and display assorted time-varying consumption patterns. The results show that the proposed method can significantly improve the performance of existing techniques for a wide range of scenarios.