论文标题
DEF:3D形状的尖锐几何特征的深度估计
DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes
论文作者
论文摘要
我们提出了对特征(DEF)的深度估计器,这是一个基于学习的框架,用于预测采样3D形状中的尖锐几何特征。与现有数据驱动的方法不同,将这个问题减少到特征分类,我们建议回归一个标量字段,该标量字段代表从点样本到本地补丁上最接近特征线的距离。我们的方法是通过融合在单个斑块上获得的距离对功能估计值来扩展到巨大点云的第一种方法。我们对新提出的合成和现实3D CAD模型基准的相关最新方法广泛评估了我们的方法。我们的方法不仅优于这些方法(在召回率和误报率方面有所改善),而且在训练我们的合成数据模型并将其微调的小数据集中对扫描数据的小数据集进行了微调后,可以概括为现实世界扫描。我们演示了下游应用程序,在该应用程序中,我们重建了范围扫描数据的直型和弯曲的尖锐特征线的明确表示。
We propose Deep Estimators of Features (DEFs), a learning-based framework for predicting sharp geometric features in sampled 3D shapes. Differently from existing data-driven methods, which reduce this problem to feature classification, we propose to regress a scalar field representing the distance from point samples to the closest feature line on local patches. Our approach is the first that scales to massive point clouds by fusing distance-to-feature estimates obtained on individual patches. We extensively evaluate our approach against related state-of-the-art methods on newly proposed synthetic and real-world 3D CAD model benchmarks. Our approach not only outperforms these (with improvements in Recall and False Positives Rates), but generalizes to real-world scans after training our model on synthetic data and fine-tuning it on a small dataset of scanned data. We demonstrate a downstream application, where we reconstruct an explicit representation of straight and curved sharp feature lines from range scan data.