论文标题
使用深度协方差估算以感知驱动的无人机运动计划来学习如何使用敏捷性来折衷安全
Learning How to Trade-Off Safety with Agility Using Deep Covariance Estimation for Perception Driven UAV Motion Planning
论文作者
论文摘要
我们研究了如何利用预测模型根据敏捷无人机(UAV)导航任务的感知不确定性估计来选择适当的运动计划策略。尽管针对此类任务有多种运动计划和感知算法,但在许多当前的运动算法中并未明确处理感知不确定性的影响,这会导致在现实生活中导致由于外部干扰而导致测量值嘈杂的情况。我们开发了一个新颖的框架,将感知不确定性嵌入高水平运动计划管理中,以便为当前估计的感知不确定性选择最佳的可用运动计划方法。我们使用深层神经网络(Covnet)估算视觉输入的不确定性,该网络明确预测了当前测量值的协方差。接下来,我们训练高级机器学习模型,以预测当前的协方差估计以及无人机状态的最低成本运动计划算法。我们在现实数据和无人机赛车模拟上都证明了我们的方法,称为不确定性驱动运动计划切换器(UDS)可产生比较替代方案的最安全,最快的轨迹。此外,我们表明,开发的方法通过切换到运动计划者来方便安全性,在估计的协方差较高时会导致更敏捷的轨迹,反之亦然。
We investigate how to utilize predictive models for selecting appropriate motion planning strategies based on perception uncertainty estimation for agile unmanned aerial vehicle (UAV) navigation tasks. Although there are variety of motion planning and perception algorithms for such tasks, the impact of perception uncertainty is not explicitly handled in many of the current motion algorithms, which leads to performance loss in real-life scenarios where the measurement are often noisy due to external disturbances. We develop a novel framework for embedding perception uncertainty to high level motion planning management, in order to select the best available motion planning approach for the currently estimated perception uncertainty. We estimate the uncertainty in visual inputs using a deep neural network (CovNet) that explicitly predicts the covariance of the current measurements. Next, we train a high level machine learning model for predicting the lowest cost motion planning algorithm given the current estimate of covariance as well as the UAV states. We demonstrate on both real-life data and drone racing simulations that our approach, named uncertainty driven motion planning switcher (UDS) yields the safest and fastest trajectories among compared alternatives. Furthermore, we show that the developed approach learns how to trade-off safety with agility by switching to motion planners that leads to more agile trajectories when the estimated covariance is high and vice versa.