论文标题
接触谎言poset代数
Contact Lie poset algebras
论文作者
论文摘要
我们提供了组合配方,用于构建所有高度的poset,最多有两个poset,相应的A型Poset代数为接触。在连接此类POSET的情况下,一个离散的摩尔斯理论论点表明,POSETS的简单实现是可缩合的。从Coll和Gerstenhaber的同一个半导产品的共同体结果中,相应的接触谎言代数绝对是刚性的。
We provide a combinatorial recipe for constructing all posets of height at most two for which the corresponding type-A Lie poset algebra is contact. In the case that such posets are connected, a discrete Morse theory argument establishes that the posets' simplicial realizations are contractible. It follows from a cohomological result of Coll and Gerstenhaber on Lie semi-direct products that the corresponding contact Lie algebras are absolutely rigid.