论文标题

缩放到启动:图像用高频详细信息介绍

Zoom-to-Inpaint: Image Inpainting with High-Frequency Details

论文作者

Kim, Soo Ye, Aberman, Kfir, Kanazawa, Nori, Garg, Rahul, Wadhwa, Neal, Chang, Huiwen, Karnad, Nikhil, Kim, Munchurl, Liba, Orly

论文摘要

尽管深度学习使图像介绍方面取得了巨大的飞跃,但当前的方法通常无法综合现实的高频细节。在本文中,我们建议将超分辨率应用于粗糙的重建输出,以高分辨率进行精炼,然后将输出降低到原始分辨率。通过将高分辨率图像引入改进网络,我们的框架能够重建更多的细节,这些细节通常由于光谱偏差而被平滑 - 神经网络倾向于比高频更好地重建低频。为了协助培训大型高度孔洞的改进网络,我们提出了一种渐进的学习技术,其中缺失区域的大小随培训的进展而增加。我们的缩放,完善和缩放策略结合了高分辨率的监督和渐进式学习,构成了一种框架 - 不合时宜的方法,用于增强可应用于任何基于CNN的涂层方法的高频细节。我们提供定性和定量评估以及消融分析,以显示我们方法的有效性。这种看似简单但功能强大的方法优于最先进的介绍方法。我们的代码可在https://github.com/google/zoom-to-inpaint中找到

Although deep learning has enabled a huge leap forward in image inpainting, current methods are often unable to synthesize realistic high-frequency details. In this paper, we propose applying super-resolution to coarsely reconstructed outputs, refining them at high resolution, and then downscaling the output to the original resolution. By introducing high-resolution images to the refinement network, our framework is able to reconstruct finer details that are usually smoothed out due to spectral bias - the tendency of neural networks to reconstruct low frequencies better than high frequencies. To assist training the refinement network on large upscaled holes, we propose a progressive learning technique in which the size of the missing regions increases as training progresses. Our zoom-in, refine and zoom-out strategy, combined with high-resolution supervision and progressive learning, constitutes a framework-agnostic approach for enhancing high-frequency details that can be applied to any CNN-based inpainting method. We provide qualitative and quantitative evaluations along with an ablation analysis to show the effectiveness of our approach. This seemingly simple, yet powerful approach, outperforms state-of-the-art inpainting methods. Our code is available in https://github.com/google/zoom-to-inpaint

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源