论文标题

分子云(GEMS)III中的气相元素丰度。解锁CS化学:CS+O反应

Gas-phase Elemental abundances in Molecular cloudS (GEMS) III. Unlocking the CS chemistry: the CS+O reaction

论文作者

Bulut, N., Roncero, O., Aguado, A., Loison, J. -C., Navarro-Almaida, D., Wakelam, V., Fuente, A., Roueff, E., Gal, R. Le, Caselli, P., Hickson, M. Gerinm K. M., Spezzano, S., Riviere-Marichalar, P., Alonso-Albi, T., Bachiller, R., Jimenez-Serra, I., Kramer, C., Tercero, B., Rodriguez-Baras, M., Garcia-Burillo, S., Goicoechea, J. R., Treviño-Morales, S. P., Esplugues, G., Cazaux, S., Commercon, B., Laas, J., Kirk, J., Lattanzi, V., Martin-Domenech, R., Muñoz-Caro, G., Pineda, J., Ward-Thompson, D., Tafalla, M., Marcelino, N., Malinen, J., Friesen, R., Giuliano, B. M., Agundez, M., Hacar, A.

论文摘要

CS是冷的深色分子云中最丰富的气相S含量分子之一。在毫米波长范围内的几个过渡中,很容易观察到它,并且已被广泛用作我们银河系和外部星系中星际介质中气体密度的示踪剂。当假设硫的元素丰度的宇宙值时,化学模型无法解释观察到的CS丰度。 CS + O-> CO + S反应已被提出为低温下相关的CS破坏机制,并可以解释模型和观测之间的差异。它的反应速率已在150-400 K的温度下进行了实验测量,但是向较低温度的外推令人怀疑。在这里,我们计算在星际介质中盛行的温度<150 K的CS+O反应速率。我们进行了从头算的计算,以获得CS+O系统的三个最低PE。这些PES用于研究反应动力学,使用几种方法最终计算CS+O热反应速率。我们将150-400 K的理论计算结果与在实验室中获得的结果进行了比较。我们对CS+O反应的详细理论研究与在150-400 K时获得的实验数据一致,证明了我们方法的可靠性。在较低温度下进行了仔细的分析后,我们发现10 K处的速率常数可以忽略不计,这与使用Arrhenius表达的实验数据外推一致。我们使用更新的化学网络根据由GEMS项目观测确定的分子丰度来对TMC1中的硫化学进行建模。在我们的模型中,我们考虑了沿云的宇宙射线电离速率的预期下降。当假设硫丰度的宇宙值时,CS的丰度仍被高估。

CS is among the most abundant gas-phase S-bearing molecules in cold dark molecular clouds. It is easily observable with several transitions in the millimeter wavelength range, and has been widely used as a tracer of the gas density in the interstellar medium in our Galaxy and external galaxies. Chemical models fail to account for the observed CS abundances when assuming the cosmic value for the elemental abundance of sulfur. The CS+O -> CO + S reaction has been proposed as a relevant CS destruction mechanism at low temperatures, and could explain the discrepancy between models and observations. Its reaction rate has been experimentally measured at temperatures of 150-400 K, but the extrapolation to lower temperatures is doubtful. Here we calculate the CS+O reaction rate at temperatures <150 K which are prevailing in the interstellar medium. We performed ab initio calculations to obtain the three lowest PES of the CS+O system. These PESs are used to study the reaction dynamics, using several methods to eventually calculate the CS+O thermal reaction rates. We compare the results of our theoretical calculations for 150-400 K with those obtained in the laboratory. Our detailed theoretical study on the CS+O reaction, which is in agreement with the experimental data obtained at 150-400 K, demonstrates the reliability of our approach. After a careful analysis at lower temperatures, we find that the rate constant at 10 K is negligible, which is consistent with the extrapolation of experimental data using the Arrhenius expression. We use the updated chemical network to model the sulfur chemistry in TMC1 based on molecular abundances determined from GEMS project observations. In our model, we take into account the expected decrease of the cosmic ray ionization rate along the cloud. The abundance of CS is still overestimated when assuming the cosmic value for the sulfur abundance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源