论文标题

线性地图的物理可实现性及其在错误缓解中的应用

Physical Implementability of Linear Maps and Its Application in Error Mitigation

论文作者

Jiang, Jiaqing, Wang, Kun, Wang, Xin

论文摘要

完全积极和痕量的地图表征了可以实现的量子操作。另一方面,从理论和实践角度来看,一般的线性图,例如无法物理实施的正面但不是完全积极的地图,是量子信息中的基本要素。这就提出了一个问题,即通过物理上可实现的操作可以模拟或近似一般线性图的作用。在这项工作中,我们引入了一个系统的框架,以使用准轴性分解技术解决此任务。我们将目标线性地图分解为物理可实现的操作的线性组合,并将物理性可实施性度量作为准稳定性必须与最小的负部分相关,这直接量化了使用可实施的量子量子操作来模拟给定图的成本。我们表明,通过半决赛程序可以有效地计算此措施,并证明了此措施的几种属性,例如忠诚,添加性和单一不变性。我们根据CHOI操作员的痕量标准来得出下限和上限,并获得几个实际利益线性线性图的分析表达式。此外,我们在缓解量子误差方案中具有操作含义:它可以通过准稳定性分解技术实现采样成本的下限。特别是,对于并行量子噪声,我们表明,缓解全局误差没有比局部错误缓解没有优势。

Completely positive and trace-preserving maps characterize physically implementable quantum operations. On the other hand, general linear maps, such as positive but not completely positive maps, which can not be physically implemented, are fundamental ingredients in quantum information, both in theoretical and practical perspectives. This raises the question of how well one can simulate or approximate the action of a general linear map by physically implementable operations. In this work, we introduce a systematic framework to resolve this task using the quasiprobability decomposition technique. We decompose a target linear map into a linear combination of physically implementable operations and introduce the physical implementability measure as the least amount of negative portion that the quasiprobability must pertain, which directly quantifies the cost of simulating a given map using physically implementable quantum operations. We show this measure is efficiently computable by semidefinite programs and prove several properties of this measure, such as faithfulness, additivity, and unitary invariance. We derive lower and upper bounds in terms of the Choi operator's trace norm and obtain analytic expressions for several linear maps of practical interests. Furthermore, we endow this measure with an operational meaning within the quantum error mitigation scenario: it establishes the lower bound of the sampling cost achievable via the quasiprobability decomposition technique. In particular, for parallel quantum noises, we show that global error mitigation has no advantage over local error mitigation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源