论文标题

RESIZEMIX:将数据与保存的对象信息和真实标签混合

ResizeMix: Mixing Data with Preserved Object Information and True Labels

论文作者

Qin, Jie, Fang, Jiemin, Zhang, Qian, Liu, Wenyu, Wang, Xingang, Wang, Xinggang

论文摘要

数据增强是一项强大的技术,可以增加数据的多样性,可以有效地提高神经网络在图像识别任务中的概括能力。最近基于数据混合的增强策略取得了巨大成功。尤其是,CutMix使用一种简单但有效的方法来改善分类器,通过将贴片从一个图像中随机裁剪并将其粘贴在另一个图像上。为了进一步促进CutMix的性能,一系列作品探索了使用图像的显着信息来指导混合。我们系统地研究了显着性信息对混合数据的重要性,并发现显着性信息对于促进增强性能不是必需的。此外,我们发现基于切割的数据混合方法带有标签错误分配和对象信息缺失的两个问题,这些问题无法同时解决。我们提出了一种更有效但非常容易实现的方法,即重新启动。我们通过将源图像直接调整到一个小补丁并将其粘贴到另一个图像上来混合数据。与常规基于切割的方法相比,获得的贴片可保留更多实质性的对象信息。 Resizemix显示了与CutMix相比的明显优势,并且在没有其他计算成本的情况下,对图像分类和对象检测任务的显着性引导方法也表现出了明显的优势,甚至超过了最昂贵的基于搜索的自动增强方法。

Data augmentation is a powerful technique to increase the diversity of data, which can effectively improve the generalization ability of neural networks in image recognition tasks. Recent data mixing based augmentation strategies have achieved great success. Especially, CutMix uses a simple but effective method to improve the classifiers by randomly cropping a patch from one image and pasting it on another image. To further promote the performance of CutMix, a series of works explore to use the saliency information of the image to guide the mixing. We systematically study the importance of the saliency information for mixing data, and find that the saliency information is not so necessary for promoting the augmentation performance. Furthermore, we find that the cutting based data mixing methods carry two problems of label misallocation and object information missing, which cannot be resolved simultaneously. We propose a more effective but very easily implemented method, namely ResizeMix. We mix the data by directly resizing the source image to a small patch and paste it on another image. The obtained patch preserves more substantial object information compared with conventional cut-based methods. ResizeMix shows evident advantages over CutMix and the saliency-guided methods on both image classification and object detection tasks without additional computation cost, which even outperforms most costly search-based automatic augmentation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源