论文标题
使用主动信息存储来量化视觉扫描的可预测性
Quantifying the predictability of visual scanpaths using active information storage
论文作者
论文摘要
基于熵的措施是在各种条件下研究人类凝视行为的重要工具。特别是,凝视过渡熵(GTE)是量化固定过渡的可预测性的流行方法。但是,GTE并未考虑连续两次固定以外的时间依赖性,因此可能低估了扫描路径的实际可预测性。取而代之的是,我们建议通过估计活动信息存储(AIS)来量化扫描路径可预测性,该信息存储(AIS)可以解释跨越多个固定的依赖项。 AI被计算为过程的多元过去状态与其下一个值之间的共同信息。因此,它能够测量过去固定序列提供的有关下一个固定的信息,从而涵盖更长的时间范围。采用拟议的方法,我们能够根据估计的AIS来区分诱导的观察者状态,这提供了首先证明AIS可以用于推断用户状态以改善人机相互作用的证据。
Entropy-based measures are an important tool for studying human gaze behavior under various conditions. In particular, gaze transition entropy (GTE) is a popular method to quantify the predictability of fixation transitions. However, GTE does not account for temporal dependencies beyond two consecutive fixations and may thus underestimate a scanpath's actual predictability. Instead, we propose to quantify scanpath predictability by estimating the active information storage (AIS), which can account for dependencies spanning multiple fixations. AIS is calculated as the mutual information between a processes' multivariate past state and its next value. It is thus able to measure how much information a sequence of past fixations provides about the next fixation, hence covering a longer temporal horizon. Applying the proposed approach, we were able to distinguish between induced observer states based on estimated AIS, providing first evidence that AIS may be used in the inference of user states to improve human-machine interaction.