论文标题
磁场驱动的3D金属绝缘体转变的理论
Theory for magnetic-field-driven 3D metal-insulator transitions in the quantum limit
论文作者
论文摘要
由磁场驱动的金属 - 绝缘体转变已在2D中进行了广泛的研究,但仍缺乏3D理论。在最近的实验中,我们在3D系统的强磁场量子限制中开发了一种金属构造物转变的缩放理论。通过使用重新归一化组的计算来治疗相同基础上的电子电子相互作用,电子相互作用和无序,我们获得了表征对温度和磁场电阻率的缩放关系的关键指数。通过将临界指数与最近实验中的临界指数进行比较[F. Tang等人,自然(伦敦)569,537(2019)],我们得出结论,绝缘基态不仅是由电子 - 光子相互作用驱动的电荷密度波,而且还与强的电子电子相互作用和反向散射障碍并存。我们还提出了一个电流尺度实验以进行进一步验证。我们的理论将有助于探索在强磁场下的3D金属绝缘体过渡的新兴领域。
Metal-insulator transitions driven by magnetic fields have been extensively studied in 2D, but a 3D theory is still lacking. Motivated by recent experiments, we develop a scaling theory for the metal-insulator transitions in the strong-magnetic-field quantum limit of a 3D system. By using a renormalization-group calculation to treat electron-electron interactions, electron-phonon interactions, and disorder on the same footing, we obtain the critical exponent that characterizes the scaling relations of the resistivity to temperature and magnetic field. By comparing the critical exponent with those in a recent experiment [F. Tang et al., Nature (London) 569, 537 (2019)], we conclude that the insulating ground state was not only a charge-density wave driven by electron-phonon interactions but also coexisting with strong electron-electron interactions and backscattering disorder. We also propose a current-scaling experiment for further verification. Our theory will be helpful for exploring the emergent territory of 3D metal-insulator transitions under strong magnetic fields.