论文标题
带有连续重力波的探测行星质量原始黑洞
Probing planetary-mass primordial black holes with continuous gravitational waves
论文作者
论文摘要
引力波可以探测行星质量原始黑洞的存在。考虑到$ [10^{ - 7} -10^{ - 2}] m_ \ odot $的质量范围,灵感的原始黑洞可能会发出连续的引力波,准单音色信号,准单音色信号持续了多年,或者是短暂的连续波,或者频率进化的信号,其频率进化遵循了power Law和last for $ \ be $ \ \ \ \ \ \ \ \ oson} $(o){o \ o \ oson} $ {o){o){o \ oson){o){o} c {o \ oson {m-oson {m-oson){o} $ {m-oson {m-oson){m-oson c = o。我们表明,我们银河系中的原始黑洞二进制物可能会为不同的质量功能和形成机理产生可检测的引力波。为了检测这些灵感,我们适应最初旨在从不对称旋转中子星搜索引力波的设计。第一种方法,即频率,利用了灵感的黑洞的连续,准单音色的性质,这些性质足够轻,并且远距离分开,以至于它们的轨道频率可以像线性一样近似,并具有较小的旋转。第二种方法是广义频率 - 降低了线性的假设,并允许信号频率遵循幂律的演变。我们探索每种方法敏感的参数空间,得出理论灵敏度估计值,确定最佳搜索参数并计算全天候和有向搜索的计算成本。我们预测了银河系中原始黑洞的丰富性,这表明我们可以约束暗物质的一部分,即原始的黑洞构成了$ f _ {\ rm pbh} $,即$ f _ {\ rm pbh} \ rm pbh} \ sieldsim 1 $ 1 $ [4 \ timess $ [4 \ timess $ [4 \ timess $ \ \ \ \ \ timess $ \ frime for Chirp asses $ \ timess。 10^{ - 5} -10^{ - 3}] M_ \ ODOT $用于当前检测器。对于爱因斯坦望远镜,我们期望约束将提高到$ f _ {\ rm pbh} \ lyseSim 10^{ - 2} $,对于[$ 10^{ - 4} -4} -10^{ - 3}] m_ \ odot $之间的chirp块。
Gravitational waves can probe the existence of planetary-mass primordial black holes. Considering a mass range of $[10^{-7}-10^{-2}]M_\odot$, inspiraling primordial black holes could emit either continuous gravitational waves, quasi-monochromatic signals that last for many years, or transient continuous waves, signals whose frequency evolution follows a power law and last for $\mathcal{O}$(hours-months). We show that primordial black hole binaries in our galaxy may produce detectable gravitational waves for different mass functions and formation mechanisms. In order to detect these inspirals, we adapt methods originally designed to search for gravitational waves from asymmetrically rotating neutron stars. The first method, the Frequency-Hough, exploits the continuous, quasi-monochromatic nature of inspiraling black holes that are sufficiently light and far apart such that their orbital frequencies can be approximated as linear with a small spin-up. The second method, the Generalized Frequency-Hough, drops the assumption of linearity and allows the signal frequency to follow a power-law evolution. We explore the parameter space to which each method is sensitive, derive a theoretical sensitivity estimate, determine optimal search parameters and calculate the computational cost of all-sky and directed searches. We forecast limits on the abundance of primordial black holes within our galaxy, showing that we can constrain the fraction of dark matter that primordial black holes compose, $f_{\rm PBH}$, to be $f_{\rm PBH}\lesssim 1$ for chirp masses between $[4\times 10^{-5}-10^{-3}]M_\odot$ for current detectors. For the Einstein Telescope, we expect the constraints to improve to $f_{\rm PBH}\lesssim 10^{-2}$ for chirp masses between [$10^{-4}-10^{-3}]M_\odot$.