论文标题
3D轴向注意肺结节分类
3D Axial-Attention for Lung Nodule Classification
论文作者
论文摘要
目的:近年来,基于非本地的方法已成功地应用于肺结节分类。但是,这些方法对低分辨率特征图的关注或有限的3D注意力有限。此外,它们仍然依赖于方便的本地过滤器,例如卷积,因为完整的3D注意力很昂贵,并且需要一个大数据集,这可能是不可用的。 方法:我们建议使用3D轴向注意,这需要常规非本地网络的计算能力的一部分(即自我注意力)。与常规的非本地网络不同,3D轴向注意力网络分别将注意力操作应用于每个轴。此外,我们通过建议将3D位置编码添加到共享嵌入中来解决非本地网络的不变位置问题。 结果:我们验证了442个良性结节和406个恶性结节的提议方法,这些方法是通过仅使用至少三位放射科医生注释的严格的实验设置来从公共LIDC-IDRI数据集中提取的。我们的结果表明,3D轴向注意模型在包括AUC和准确性在内的所有评估指标上实现了最先进的性能。 结论:所提出的模型提供了完整的3D注意力,其中3D体积空间中的每个元素(即像素)有效地关注结节中的所有其他元素。因此,3D轴向注意网络可以在所有层中使用,而无需局部过滤器。实验结果表明,全3D关注对分类肺结节的重要性。
Purpose: In recent years, Non-Local based methods have been successfully applied to lung nodule classification. However, these methods offer 2D attention or limited 3D attention to low-resolution feature maps. Moreover, they still depend on a convenient local filter such as convolution as full 3D attention is expensive to compute and requires a big dataset, which might not be available. Methods: We propose to use 3D Axial-Attention, which requires a fraction of the computing power of a regular Non-Local network (i.e., self-attention). Unlike a regular Non-Local network, the 3D Axial-Attention network applies the attention operation to each axis separately. Additionally, we solve the invariant position problem of the Non-Local network by proposing to add 3D positional encoding to shared embeddings. Results: We validated the proposed method on 442 benign nodules and 406 malignant nodules, extracted from the public LIDC-IDRI dataset by following a rigorous experimental setup using only nodules annotated by at least three radiologists. Our results show that the 3D Axial-Attention model achieves state-of-the-art performance on all evaluation metrics, including AUC and Accuracy. Conclusions: The proposed model provides full 3D attention, whereby every element (i.e., pixel) in the 3D volume space attends to every other element in the nodule effectively. Thus, the 3D Axial-Attention network can be used in all layers without the need for local filters. The experimental results show the importance of full 3D attention for classifying lung nodules.