论文标题

基于最大熵的配置文件控制图

Profile control chart based on maximum entropy

论文作者

Mortezanejad, Seyedeh Azadeh Fallah, Wang, Ruochen, Borzadaran, Gholamreza Mohtashami, Ding, Renkai, Tran, Kim Phuc

论文摘要

随着时间的流逝,监视过程在制造过程中非常重要,以减少浪费金钱和时间。 Shewhart,Cusum和EWMA的某些图表通常是使用单个预期属性的过程,该过程以各种偏移范围的不同过程中使用。在某些情况下,过程质量的特征是不同类型的配置文件。本文的目的是监视配置文件系数,而不是过程均值。在本文中,提出了两种方法,用于同时监视简单线性轮廓的截距和斜率。在这方面,这里比较了两种方法。第一个是线性回归,它是最大熵原理。 T2酒店统计量用于将两个系数传递到标量。使用仿真研究来比较第二种误差和平均运行长度的两种方法。最后,提出了两个真实示例,以证明所提出的图表的适用性。第一个是关于半导体的,第二个是关于药物生产过程的。方法的性能相对相似。最大熵在正确识别药物示例中的差异方面起着重要作用,而线性回归未正确检测这些变化。

Monitoring a process over time is so important in manufacturing processes to reduce the waste of money and time. Some charts as Shewhart, CUSUM, and EWMA are common to monitor a process with a single intended attribute which is used in different kinds of processes with various ranges of shifts. In some cases, the process quality is characterized by different types of profiles. The purpose of this article is to monitor profile coefficients instead of a process mean. In this paper, two methods are proposed for monitoring the intercept and slope of the simple linear profile, simultaneously. In this regard, two methods are compared here. The first one is the linear regression, and the one is the maximum entropy principle. The T2 Hotelling statistics is used to transfer two coefficients to a scalar. A simulation study is applied to compare the two methods in terms of the second type of error and average run length. Finally, two real examples are presented to demonstrate the applicability of the proposed chart. The first one is about semiconductors, and the second one is about pharmaceutical production processes. The performance of the methods is relatively similar. The maximum entropy plays an important role in correctly identifying differences in the pharmaceutical example, while linear regression did not correctly detect these changes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源