论文标题

Benjamin-Bona-Mahony方程的分散性Riemann问题

Dispersive Riemann problem for the Benjamin-Bona-Mahony equation

论文作者

Congy, T., El, G. A., Hoefer, M. A., Shearer, M.

论文摘要

使用渐近方法和数值模拟研究了平滑步骤初始值问题的长时间动力学初始值问题或Benjamin-Bona-Mahony(BBM)方程的分散性Riemann问题$ U_T + UU_X = UU_X = UU_X = U_ {XXT} $。 BBM方程的分散性Riemann问题解决方案的目录比相关的,可集成的Korteweg-De Vries方程$ u_t + uu_x + u_ {xxx} = 0。狭窄的宽度产生了稀疏性和分散冲击波(DSW)溶液,这些溶液伴随着两相线性波浪形,孤立波脱落和膨胀冲击的产生。狭窄和广泛的初始宽度都会引起两相非线性波浪形或DSW内爆,以及一种新型的对称数据的分散宽松冲击。分散宽松的冲击是通过BBM方程的近似自相似解来描述的,该方程的极限为$ t \ to \ infty $是一种固定的,不连续的弱解决方案。通过在分散宽松冲击的数据中引入轻微的不对称性,可以观察到不一致的孤立波动。进一步的不对称性导致DSW内爆机制,该策略由一对耦合的非线性Schrödinger方程有效地描述。 BBM方程中的非局部性,非线性和分散性之间的复杂相互作用是分散性分散性侵占问题的丰富多种非经典分散性流体动力溶液的基础。

Long time dynamics of the smoothed step initial value problem or dispersive Riemann problem for the Benjamin-Bona-Mahony (BBM) equation $u_t + uu_x = u_{xxt}$ are studied using asymptotic methods and numerical simulations. The catalog of solutions of the dispersive Riemann problem for the BBM equation is much richer than for the related, integrable, Korteweg-de Vries equation $u_t + uu_x + u_{xxx} =0.$ The transition width of the initial smoothed step is found to significantly impact the dynamics. Narrow width gives rise to rarefaction and dispersive shock wave (DSW) solutions that are accompanied by the generation of two-phase linear wavetrains, solitary wave shedding, and expansion shocks. Both narrow and broad initial widths give rise to two-phase nonlinear wavetrains or DSW implosion and a new kind of dispersive Lax shock for symmetric data. The dispersive Lax shock is described by an approximate self-similar solution of the BBM equation whose limit as $t \to \infty$ is a stationary, discontinuous weak solution. By introducing a slight asymmetry in the data for the dispersive Lax shock, the generation of an incoherent solitary wavetrain is observed. Further asymmetry leads to the DSW implosion regime that is effectively described by a pair of coupled nonlinear Schrödinger equations. The complex interplay between nonlocality, nonlinearity and dispersion in the BBM equation underlies the rich variety of nonclassical dispersive hydrodynamic solutions to the dispersive Riemann problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源