论文标题

超出表面支持非交通式完整交叉点

Hypersurface support for noncommutative complete intersections

论文作者

Negron, Cris, Pevtsova, Julia

论文摘要

我们引入了超出表面支持的无限变体,以实现有限维,非交通式完整交集。通过非公共的完整交叉点,我们的意思是一个代数R,该代数是由有限的全球尺寸的Noetherian代数$ Q $的平滑变形$ q \ r $。我们表明,Hyperface支持定义了对大奇异性类别$ sing(R)$的支持理论,并且仅当对象本身消失时,$ sing(r)$中对象的支持就消失了。我们的工作灵感来自Avramov和Buchweitz的支持理论(可交换)本地完整交集。在同伴中,我们采用超表面支持以及本文的结果,为许多有限维的HOPF代数家庭中的稳定类别中的厚理想分类。

We introduce an infinite variant of hypersurface support for finite-dimensional, noncommutative complete intersections. By a noncommutative complete intersection we mean an algebra R which admits a smooth deformation $Q\to R$ by a Noetherian algebra $Q$ which is of finite global dimension. We show that hypersurface support defines a support theory for the big singularity category $Sing(R)$, and that the support of an object in $Sing(R)$ vanishes if and only if the object itself vanishes. Our work is inspired by Avramov and Buchweitz' support theory for (commutative) local complete intersections. In a companion piece, we employ hypersurface support, and the results of the present paper, to classify thick ideals in stable categories for a number of families of finite-dimensional Hopf algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源