论文标题
多组分非线性schrödinger方程的高阶矢量圆锥体和渐近估计值
Higher-order vector Peregrine solitons and asymptotic estimates for the multi-component nonlinear Schrödinger equations
论文作者
论文摘要
我们首先为任何基于循环组理论的多组分NLS方程的第一和高阶矢量旋子(别名理性的流氓波)(别名理性的流氓波),这是一个特征性多项式(n + 1)的明显(n + 1) - 具有特征性多项式(n + 1)的特征性(n + 1)。特别是,对于某些参数约束,这些矢量有理流氓波是平等时间对称。提出了一种系统而有效的方法来研究这些矢量流氓波的渐近行为,以使流氓波的分解与所谓的管理多项式有关,这在对矢量流氓波的研究中铺平了一种强大的方式,该研究的多项式涉及多项式整体系统的矢量流氓波结构。可以通过参数向量确定具有最大振幅的矢量流氓波,这在多组分物理系统中很有趣并且有用。
We first report the first- and higher-order vector Peregrine solitons (alias rational rogue waves) for the any multi-component NLS equations based on the loop group theory, an explicit (n + 1)-multiple eigenvalue of a characteristic polynomial of degree (n + 1) related to the condition of Benjamin-Feir instability, and inverse functions. Particularly, these vector rational rogue waves are parity-time symmetric for some parameter constraints. A systematic and effective approach is proposed to study the asymptotic behaviors of these vector rogue waves such that the decompositions of rogue waves are related to the so-called governing polynomials, which pave a powerful way in the study of vector rogue wave structures of the multi-component integrable systems. The vector rogue waves with maximal amplitudes can be determined via the parameter vectors, which is interesting and useful in the multi-component physical systems.