论文标题

Jeu de Taquin的一系列列重写和汇合

String of columns rewriting and confluence of the jeu de taquin

论文作者

Hage, Nohra, Malbos, Philippe

论文摘要

Schützenberger的Jeu de Taquin是Tableaux结构的算法,该算法将偏斜的Tableau转变为年轻的Tableau,这是通过Tableaux柱上的局部转换规则变成了一个年轻的Tableau。该算法定义了与质量一致性兼容的Tableaux上的等效关系,并证明了Littlewood-Richardson关于Schur多项式的规则。在本文中,我们介绍了一系列列的重写系统的概念,作为圆柱胶合序列转换的机理。我们将Jeu de Taquin算法的执行描述为重写一串列的重写路径。我们在塑料一致性上推断了代数性能,并将Jeu de Taquin与插入tableaux插入算法相关联。

Schützenberger's jeu de taquin is an algorithm on the structure of tableaux, which transforms a skew tableau into a Young one by local transformation rules on the columns of the tableaux. This algorithm defines an equivalence relation on tableaux compatible with the plactic congruence, and gives a proof of the Littlewood-Richardson rule on Schur polynomials. In this article, we introduce the notion of string of columns rewriting system as mechanism of transformations of glued sequences of columns. We describe the execution of the jeu de taquin algorithm as rewriting paths of a string of columns rewriting. We deduce algebraic properties on the plastic congruence and we relate the jeu de taquin to insertion algorithms on tableaux.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源