论文标题
带有干净地面真相的实时网络摄像头心率和可变性估算进行评估
Real-time Webcam Heart-Rate and Variability Estimation with Clean Ground Truth for Evaluation
论文作者
论文摘要
远程照相拍摄学(RPPG)使用摄像机来估计一个人的心率(HR)。类似于心率如何提供有关一个人的生命体征的有用信息,可以从心率变异性(HRV)中获得有关基本生理/心理条件的见解。 HRV是心跳之间的间隔的良好波动的量度。但是,此措施需要暂时地定位高精度的心跳。我们引入了一种精致且有效的实时RPPG管道,并具有新颖的过滤和运动抑制作用,不仅可以估计心率,而且还将脉冲波形提取到时间跳动并测量心率变异性。这种无监督的方法不需要特定于RPPG的培训,并且能够实时运行。我们还引入了一个新的多模式视频数据集Vicarppg 2,该数据集是专为评估HR和HRV估计的RPPG算法而设计的。我们在各种条件下验证和研究我们的方法在全面的公共和自我录制的数据集上,显示最先进的结果,并为某些独特的方面提供有用的见解。最后,我们提供了清洁工作,这是现有RPPG数据集的人文验证的地面真相峰/心跳注释的集合。这些经过验证的注释应使RPPG算法的未来评估和基准测试更准确,标准化和公平。
Remote photo-plethysmography (rPPG) uses a camera to estimate a person's heart rate (HR). Similar to how heart rate can provide useful information about a person's vital signs, insights about the underlying physio/psychological conditions can be obtained from heart rate variability (HRV). HRV is a measure of the fine fluctuations in the intervals between heart beats. However, this measure requires temporally locating heart beats with a high degree of precision. We introduce a refined and efficient real-time rPPG pipeline with novel filtering and motion suppression that not only estimates heart rates, but also extracts the pulse waveform to time heart beats and measure heart rate variability. This unsupervised method requires no rPPG specific training and is able to operate in real-time. We also introduce a new multi-modal video dataset, VicarPPG 2, specifically designed to evaluate rPPG algorithms on HR and HRV estimation. We validate and study our method under various conditions on a comprehensive range of public and self-recorded datasets, showing state-of-the-art results and providing useful insights into some unique aspects. Lastly, we make available CleanerPPG, a collection of human-verified ground truth peak/heart-beat annotations for existing rPPG datasets. These verified annotations should make future evaluations and benchmarking of rPPG algorithms more accurate, standardized and fair.