论文标题

从Chern-Tenenblat到Jackiw-Teitelboim通过正弦

From Chern-Tenenblat to Jackiw-Teitelboim via sine-Gordon

论文作者

Murugan, Jeff

论文摘要

对恒定曲率的二维表面的研究构成了一个美丽的几何分支,与可集成系统的数学物理学有充分的文献联系。鲜为人知但同样令人着迷的事实是它与二维重力的联系。特别是Jackiw-teitelboim(JT)重力,其中该连接通过坐标的选择表现出来,该坐标的选择大致说明将重力场方程作为正弦 - 戈登方程。在这种语言中,从正弦孤子及其特性方面,可以理解许多知名的结果,例如JT-Gravity Black Hole及其性质。在此简短说明中,我们在JT-Gravity的一些令人兴奋的发展以及更一般而言的低维量子引力的背景下重新审视了这些想法,并推测了如何同样理解这些新想法中的一些。

The study of 2-dimensional surfaces of constant curvature constitutes a beautiful branch of geometry with well-documented ties to the mathematical physics of integrable systems. A lesser known, but equally fascinating, fact is its connection to 2-dimensional gravity; specifically Jackiw-Teitelboim (JT) gravity, where the connection manifests through a coordinate choice that roughly speaking re-casts the gravitational field equations as the sine-Gordon equation. In this language many well-known results, such as the JT-gravity black hole and its properties, were understood in terms of sine-Gordon solitons and their properties. In this brief note, we revisit these ideas in the context of some of the recent exciting developments in JT-gravity and, more generally, low-dimensional quantum gravity and speculate on how some of these new ideas may be similarly understood.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源