论文标题
避免灾难:活跃的树突在动态环境中启用多任务学习
Avoiding Catastrophe: Active Dendrites Enable Multi-Task Learning in Dynamic Environments
论文作者
论文摘要
AI的主要挑战是构建在动态变化的环境中运行的具体系统。这样的系统必须适应不断变化的任务上下文并不断学习。尽管标准的深度学习系统在静态基准上实现了最新的最终成果,但它们通常在动态场景中挣扎。在这些设置中,来自多个上下文的错误信号会相互干扰,最终导致一种被称为灾难性遗忘的现象。在本文中,我们研究了以生物学启发的结构作为解决这些问题的解决方案。具体而言,我们表明,树突和局部抑制系统的生物物理特性使网络能够以特定于上下文的方式动态限制和路由信息。我们的主要贡献如下。首先,我们提出了一种新颖的人工神经网络体系结构,该建筑将活跃的树突和稀疏表示形式纳入标准的深度学习框架中。接下来,我们在两个单独的基准测试基准上研究了这种体系结构的性能,需要基于任务的适应性:Meta-World,这是一个多任务增强的学习环境,机器人代理必须学会同时解决各种操纵任务;以及一个持续的学习基准,其中模型的预测任务在整个培训过程中都会发生变化。对两个基准的分析都表明了重叠但稀疏的子网的出现,从而使系统能够以最小的遗忘来流畅地学习多个任务。我们的神经实现标志着单个体系结构在多任务和持续学习设置上首次取得了竞争成果。我们的研究阐明了神经元的生物学特性如何告知深度学习系统,以解决传统ANN通常无法解决的动态场景。
A key challenge for AI is to build embodied systems that operate in dynamically changing environments. Such systems must adapt to changing task contexts and learn continuously. Although standard deep learning systems achieve state of the art results on static benchmarks, they often struggle in dynamic scenarios. In these settings, error signals from multiple contexts can interfere with one another, ultimately leading to a phenomenon known as catastrophic forgetting. In this article we investigate biologically inspired architectures as solutions to these problems. Specifically, we show that the biophysical properties of dendrites and local inhibitory systems enable networks to dynamically restrict and route information in a context-specific manner. Our key contributions are as follows. First, we propose a novel artificial neural network architecture that incorporates active dendrites and sparse representations into the standard deep learning framework. Next, we study the performance of this architecture on two separate benchmarks requiring task-based adaptation: Meta-World, a multi-task reinforcement learning environment where a robotic agent must learn to solve a variety of manipulation tasks simultaneously; and a continual learning benchmark in which the model's prediction task changes throughout training. Analysis on both benchmarks demonstrates the emergence of overlapping but distinct and sparse subnetworks, allowing the system to fluidly learn multiple tasks with minimal forgetting. Our neural implementation marks the first time a single architecture has achieved competitive results on both multi-task and continual learning settings. Our research sheds light on how biological properties of neurons can inform deep learning systems to address dynamic scenarios that are typically impossible for traditional ANNs to solve.