论文标题
富含对称的中心功能器完全忠实
The Symmetry Enriched Center Functor is Fully Faithful
论文作者
论文摘要
在这项工作中,受到一些物理直觉的启发,我们定义了一系列富含对称性的类别,以描述富含对称性的拓扑(集合)订单,并定义了一种称为“相对张量产品”的新张量产品,该产品描述了2+1D集订单的堆叠。然后,我们选择并修改域和代码域类别,并设法使德林菲尔德中心成为完全忠实的对称单体函数。事实证明,该函子称为富含对称性的中心函子,提供了对对称性富含对称性的拓扑(集合)顺序的精确而完整的数学公式。我们还通过可凝结代数对相对张量产品提供了另一个描述。
In this work, inspired by some physical intuitions, we define a series of symmetry enriched categories to describe symmetry enriched topological (SET) orders, and define a new tensor product, called the relative tensor product, which describes the stacking of 2+1D SET orders. Then we choose and modify the domain and codomain categories, and manage to make the Drinfeld center a fully faithful symmetric monoidal functor. It turns out that this functor, named the symmetry enriched center functor, provides a precise and rather complete mathematical formulation of the boundary-bulk relation of symmetry enriched topological (SET) orders. We also provide another description of the relative tensor product via a condensable algebra.