论文标题

最佳顶点连通性甲环

Optimal Vertex Connectivity Oracles

论文作者

Pettie, Seth, Saranurak, Thatchaphol, Yin, Longhui

论文摘要

A $ K $ -VERTEX连接性甲骨文的无向$ G $是一种数据结构,在V(G)$中给定$ u,v \,报告$ \ min \ {k,κ(u,v)$,其中$κ(u,v)$是$ us u,v $ u,v $之间的$κ(u,v)$。效率的主要措施有三种:施工时间,查询时间和空间。 Izsak和Nutov的先前工作表明,总尺寸$ \ tilde {o}(kn)$的数据结构甚至可以被编码为$ \ tilde {o}(k)$ - 位标记方案,以便可以在$ \ tilde {o}(o}(k)$时。施工时间是多项式的,但未指定。 在本文中,我们介绍了前三个复杂性措施:空间,查询时间和施工时间。我们在任何顶点连接性甲骨文上给出$ω(kn)$ - 位下限。我们在最大流动时间构建了最佳空间连接性甲骨文,该甲骨文在$ o(\ log n)$时间中回答查询,独立于$ k $。

A $k$-vertex connectivity oracle for undirected $G$ is a data structure that, given $u,v\in V(G)$, reports $\min\{k,κ(u,v)\}$, where $κ(u,v)$ is the pairwise vertex connectivity between $u,v$. There are three main measures of efficiency: construction time, query time, and space. Prior work of Izsak and Nutov shows that a data structure of total size $\tilde{O}(kn)$ can even be encoded as a $\tilde{O}(k)$-bit labeling scheme so that vertex-connectivity queries can be answered in $\tilde{O}(k)$ time. The construction time is polynomial, but unspecified. In this paper we address the top three complexity measures: Space, Query Time, and Construction Time. We give an $Ω(kn)$-bit lower bound on any vertex connectivity oracle. We construct an optimal-space connectivity oracle in max-flow time that answers queries in $O(\log n)$ time, independent of $k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源