论文标题

通过功能随机微分方程的随机涡流动力学

Random vortex dynamics via functional stochastic differential equations

论文作者

Qian, Zhongmin, Süli, Endre, Zhang, Yihuang

论文摘要

在本文中,我们介绍了一个新颖的,封闭的三维(3D)随机涡流动力学系统,该系统等效于Navier-用于不可压缩的粘性流体流动方程。新的随机涡流动力学系统由随机微分方程组成,与二维随机涡流动力学方程相反,该方程与有限的普通功能差分方程相反。这种新的随机涡流系统为设计新的数值方案(随机涡流方法)铺平了道路,用于通过蒙特卡洛模拟解决三维不可压缩流体流动方程。为了得出3D随机涡流动力学方程,我们开发了两个功能强大的工具:第一个是几个泰勒扩散的条件分布的双重性,该分布提供了按零件进行集成的路径空间版本;第二个是远期类型的Feynman-kac公式,它代表了功能积分的非线性抛物线方程的解决方案。这些技术工具和潜在的想法可能对处理其他非线性问题有用。

In this paper we present a novel, closed three-dimensional (3D) random vortex dynamics system, which is equivalent to the Navier--Stokes equations for incompressible viscous fluid flows. The new random vortex dynamics system consists of a stochastic differential equation which is, in contrast with the two-dimensional random vortex dynamics equations, coupled with a finite-dimensional ordinary functional differential equation. This new random vortex system paves the way for devising new numerical schemes (random vortex methods) for solving three-dimensional incompressible fluid flow equations by Monte Carlo simulations. In order to derive the 3D random vortex dynamics equations, we have developed two powerful tools: the first is the duality of the conditional distributions of a couple of Taylor diffusions, which provides a path space version of integration by parts; the second is a forward type Feynman--Kac formula representing solutions to nonlinear parabolic equations in terms of functional integration. These technical tools and the underlying ideas are likely to be useful in treating other nonlinear problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源