论文标题

使用注意机制的信号感知到达方向估计

Signal-Aware Direction-of-Arrival Estimation Using Attention Mechanisms

论文作者

Mack, Wolfgang, Wechsler, Julian, Habets, Emanuël A. P.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The direction-of-arrival (DOA) of sound sources is an essential acoustic parameter used, e.g., for multi-channel speech enhancement or source tracking. Complex acoustic scenarios consisting of sources-of-interest, interfering sources, reverberation, and noise make the estimation of the DOAs corresponding to the sources-of-interest a challenging task. Recently proposed attention mechanisms allow DOA estimators to focus on the sources-of-interest and disregard interference and noise, i.e., they are signal-aware. The attention is typically obtained by a deep neural network (DNN) from a short-time Fourier transform (STFT) based representation of a single microphone signal. Subsequently, attention has been applied as binary or ratio weighting to STFT-based microphone signal representations to reduce the impact of frequency bins dominated by noise, interference, or reverberation. The impact of attention on DOA estimators and different training strategies for attention and DOA DNNs are not yet studied in depth. In this paper, we evaluate systems consisting of different DNNs and signal processing-based methods for DOA estimation when attention is applied. Additionally, we propose training strategies for attention-based DOA estimation optimized via a DOA objective, i.e., end-to-end. The evaluation of the proposed and the baseline systems is performed using data generated with simulated and measured room impulse responses under various acoustic conditions, like reverberation times, noise, and source array distances. Overall, DOA estimation using attention in combination with signal-processing methods exhibits a far lower computational complexity than a fully DNN-based system; however, it yields comparable results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源