论文标题

GAT-CADNET:用于CAD图中的全景符号斑点的图形注意网络

GAT-CADNet: Graph Attention Network for Panoptic Symbol Spotting in CAD Drawings

论文作者

Zheng, Zhaohua, Li, Jianfang, Zhu, Lingjie, Li, Honghua, Petzold, Frank, Tan, Ping

论文摘要

从计算机辅助设计(CAD)图中发现图形符号对于许多工业应用至关重要。与栅格图像不同,CAD图是由几何图形组成的矢量图形图形,例如片段,弧和圆圈。通过将每个CAD图视为图形,我们提出了一个新的图形注意力网络GAT-Cadnet来解决圆锥符号斑点问题:从GAT分支中得出的顶点特征映射到语义标签,而其注意力分数则是级联并映射到实例预测的。我们的关键贡献是三个方面:1)实例符号斑点任务被提出为子图检测问题,并通过预测邻接矩阵来解决; 2)相对空间编码(RSE)模块明确编码顶点之间的相对位置和几何关系,以增强顶点注意力; 3)级联的边缘编码(CEE)模块从多个阶段的多个阶段提取顶点注意,并将其视为边缘编码以预测邻接矩阵。所提出的GAT-Cadnet是直观但有效的,并设法解决了一个合并网络中的全景符号斑点问题。对公共基准的广泛实验和消融研究表明,我们的基于图形的方法超过了现有的最新方法。

Spotting graphical symbols from the computer-aided design (CAD) drawings is essential to many industrial applications. Different from raster images, CAD drawings are vector graphics consisting of geometric primitives such as segments, arcs, and circles. By treating each CAD drawing as a graph, we propose a novel graph attention network GAT-CADNet to solve the panoptic symbol spotting problem: vertex features derived from the GAT branch are mapped to semantic labels, while their attention scores are cascaded and mapped to instance prediction. Our key contributions are three-fold: 1) the instance symbol spotting task is formulated as a subgraph detection problem and solved by predicting the adjacency matrix; 2) a relative spatial encoding (RSE) module explicitly encodes the relative positional and geometric relation among vertices to enhance the vertex attention; 3) a cascaded edge encoding (CEE) module extracts vertex attentions from multiple stages of GAT and treats them as edge encoding to predict the adjacency matrix. The proposed GAT-CADNet is intuitive yet effective and manages to solve the panoptic symbol spotting problem in one consolidated network. Extensive experiments and ablation studies on the public benchmark show that our graph-based approach surpasses existing state-of-the-art methods by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源