论文标题

基于机器学习的室内光伏能源收集估计的低成本传感器

Low-cost sensors for indoor PV energy harvesting estimation based on machine learning

论文作者

Politi, Bastien, Foucaran, Alain, Camara, Nicolas

论文摘要

随着与物联网(IoT)生态系统相关的通信传感器的数量,需要急剧,精心设计的室内轻能量收获解决方案。迈向这一发展的第一步是确定实际室内环境中的可收获能量。但是,随着时间的流逝,可收获的能量随着自然而变化(光谱)和光源的强度,必须在足够长的时间内收集照明数据。此外,对于现场实施,必须同时在几个地方同时进行研究,以确定具有最高能量收获潜力的位置。在这种情况下,该手稿提出了基于商业光电二极管(而不是非常昂贵的光谱仪)的非常低成本的原型,该原型仅测量了非常基本的光谱数据。得益于从MATLAB的分类监督机器学习,其中算法学会了对新观察进行分类,并且由于对柔性GAAS太阳能电池的叠加近似模型的简单原则,我们的可收获能量估计误差在观察后的5周以外的5周后要小于5个。为了衡量此误差,将收集的数据与在真实物联网系统锂离子电池中实验收获的数据进行了比较,并将其与同一时期使用昂贵的光谱仪估计的数据进行了比较。我们的原型应允许新一代低成本室内轻能收集传感器的开发和大规模部署,以供将来可靠的室内能源收获者。

With the number of communicating sensors linked to the Internet of Things (IoT) ecosystem in-creasing dramatically, well-designed indoor light energy harvesting solutions are needed. The first step towards this development is to determine the harvestable energy in real indoor environ-ments. But the harvestable energy varying over time with nature (spectra) and intensity of the light multi-sources, lighting data must be collected for sufficiently long periods. Besides, for a real implementation on-site, studies must be able to be carried out simultaneously in several places to determine locations with the highest energy harvesting potential. In this context, this manuscript presents a very low-cost prototype based on commercial photodiodes (rather than very expensive spectrometers), which measures only a very rudimentary number of spectral data. Thanks to a classification supervised machine learning from Matlab, in which an algorithm learns to classify new observations, and thanks to a simple principle of the superposition approximation model de-veloped for flexible GaAs solar cells, our harvestable energy estimation error is less than 5 percents after more than 2 weeks of observation. To measure this error, the data collected leading to an estimate of the harvestable energy is compared to what has been experimentally harvested in a real IoT system Li-ion battery and compared to what has been estimated using an expensive spectrometer during the same period. Our prototype should allow the development and the massive deploy-ment of a new generation of low cost indoor light energy harvesting sensors for future reliable indoor energy harvesters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源