论文标题

DESI模拟光谱的深度学习以找到阻尼的LYα系统

Deep Learning of DESI Mock Spectra to Find Damped Lyα Systems

论文作者

Wang, Ben, Zou, Jiaqi, Cai, Zheng, Prochaska, J. Xavier, Sun, Zechang, Ding, Jiani, Font-Ribera, Andreu, Gonzalez, Alma, Herrera-Alcantar, Hiram K., Irsic, Vid, Lin, Xiaojing, Brooks, David, Chabanier, Solène, de Belsunce, Roger, Palanque-Delabrouille, Nathalie, Tarle, Gregory, Zhou, Zhimin

论文摘要

我们已经更新并应用了卷积神经网络(CNN)机器学习模型,以发现和表征基于暗能量光谱仪器(DESI)模拟光谱的阻尼LY $α$系统(DLA)。我们已经优化了训练过程,并构建了一个CNN模型,该模型的光谱具有高于99 $ \%$的DLA分类精度,该光谱的频谱具有超过5个像素以上5的信噪比(S/N)。分类精度是正确分类的速率。对于较低的信噪比(S/N)$ \ oft1 $ spectra,该准确性仍高于97 $ \%$。该CNN模型提供了红移和HI柱密度的估计,标准偏差为0.002,光谱为0.17 DEX,S/N每个像素以上3。此外,此DLA Finder能够识别重叠的DLA和Sub-DLA。此外,研究了不同DLA目录对重测声振荡(BAO)测量的影响。与对模拟结果的分析具有完美的DLA,BAO的宇宙拟合参数结果的差异小于$ 0.61 \%$。此差异低于模拟光谱估计的第一年的统计错误:高于$ 1.7 \%$。我们还比较了CNN和高斯工艺(GP)模型的性能。我们改进的CNN型号比较旧版本的GP代码中等14美元的纯度和7 $ \%$的完整性高出7 $ \%$,对于S/N $> $ 3。这两种代码均提供了良好的DLA红移估计,但GP可产生更好的列密度估算,$ 24 \%\%\%\%\%$ $ $。可以通过组合这两种算法来提供用于DESI主调查的可信DLA目录。

We have updated and applied a convolutional neural network (CNN) machine learning model to discover and characterize damped Ly$α$ systems (DLAs) based on Dark Energy Spectroscopic Instrument (DESI) mock spectra. We have optimized the training process and constructed a CNN model that yields a DLA classification accuracy above 99$\%$ for spectra which have signal-to-noise (S/N) above 5 per pixel. Classification accuracy is the rate of correct classifications. This accuracy remains above 97$\%$ for lower signal-to-noise (S/N) $\approx1$ spectra. This CNN model provides estimations for redshift and HI column density with standard deviations of 0.002 and 0.17 dex for spectra with S/N above 3 per pixel. Also, this DLA finder is able to identify overlapping DLAs and sub-DLAs. Further, the impact of different DLA catalogs on the measurement of Baryon Acoustic Oscillation (BAO) is investigated. The cosmological fitting parameter result for BAO has less than $0.61\%$ difference compared to analysis of the mock results with perfect knowledge of DLAs. This difference is lower than the statistical error for the first year estimated from the mock spectra: above $1.7\%$. We also compared the performance of CNN and Gaussian Process (GP) model. Our improved CNN model has moderately 14$\%$ higher purity and 7$\%$ higher completeness than an older version of GP code, for S/N $>$ 3. Both codes provide good DLA redshift estimates, but the GP produces a better column density estimate by $24\%$ less standard deviation. A credible DLA catalog for DESI main survey can be provided by combining these two algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源