论文标题
通过证书学习安全,可推广的基于感知的混合控制
Learning Safe, Generalizable Perception-based Hybrid Control with Certificates
论文作者
论文摘要
许多机器人任务都需要高维传感器,例如相机和激光镜头来浏览复杂的环境,但是在这些传感器周围开发确保安全的反馈控制器仍然是一个具有挑战性的开放问题,尤其是在涉及学习时。先前的工作已经通过分离感知和控制子系统并对感知子系统的能力做出了强有力的假设,证明了感知反馈控制器的安全性。在这项工作中,我们介绍了一种新型的学习性感知反馈混合控制器,在该控制器中,我们使用控制屏障功能(CBFS)和控制Lyapunov功能(CLF)来显示全堆栈感知反馈控制器的安全性和可笑性。我们使用神经网络直接在机器人的观察空间中学习全栈系统的CBF和CLF,而无需假设基于感知的状态估计器。我们的混合控制器称为locus(使用开关的实现学习的观察反馈控制)可以安全地浏览未知环境,一致地实现其目标,并将其概括为培训数据集以外的环境。我们在仿真和硬件中展示了实验中的轨迹,在这些实验中,它通过激光雷达传感器的反馈成功地导航了不断变化的环境。
Many robotic tasks require high-dimensional sensors such as cameras and Lidar to navigate complex environments, but developing certifiably safe feedback controllers around these sensors remains a challenging open problem, particularly when learning is involved. Previous works have proved the safety of perception-feedback controllers by separating the perception and control subsystems and making strong assumptions on the abilities of the perception subsystem. In this work, we introduce a novel learning-enabled perception-feedback hybrid controller, where we use Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) to show the safety and liveness of a full-stack perception-feedback controller. We use neural networks to learn a CBF and CLF for the full-stack system directly in the observation space of the robot, without the need to assume a separate perception-based state estimator. Our hybrid controller, called LOCUS (Learning-enabled Observation-feedback Control Using Switching), can safely navigate unknown environments, consistently reach its goal, and generalizes safely to environments outside of the training dataset. We demonstrate LOCUS in experiments both in simulation and in hardware, where it successfully navigates a changing environment using feedback from a Lidar sensor.