论文标题

迈向MEC-NFV环境中无人机的UTM服务编排

Toward a UTM-based Service Orchestration for UAVs in MEC-NFV Environment

论文作者

Bekkouche, O., Bagaa, M., Taleb, T.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The increased use of Unmanned Aerial Vehicles (UAVs) in numerous domains will result in high traffic densities in the low-altitude airspace. Consequently, UAVs Traffic Management (UTM) systems that allow the integration of UAVs in the low-altitude airspace are gaining a lot of momentum. Furthermore, the 5th generation of mobile networks (5G) will most likely provide the underlying support for UTM systems by providing connectivity to UAVs, enabling the control, tracking and communication with remote applications and services. However, UAVs may need to communicate with services with different communication Quality of Service (QoS) requirements, ranging form best-effort services to Ultra-Reliable Low-Latency Communications (URLLC) services. Indeed, 5G can ensure efficient Quality of Service (QoS) enhancements using new technologies, such as network slicing and Multi-access Edge Computing (MEC). In this context, Network Functions Virtualization (NFV) is considered as one of the pillars of 5G systems, by providing a QoS-aware Management and Orchestration (MANO) of softwarized services across cloud and MEC platforms. The MANO process of UAV's services can be enhanced further using the information provided by the UTM system, such as the UAVs'flight plans. In this paper,we propose an extended framework for the management and orchestration of UAVs'services in MECNFV environment by combining the functionalities provided by the MEC-NFV management and orchestration framework with the functionalities of a UTM system. Moreover, we propose an Integer Linear Programming (ILP) model of the placement scheme of our framework and we evaluate its performances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源