论文标题
通过学习隐式功能,从多视图图像中详细的面部几何恢复
Detailed Facial Geometry Recovery from Multi-View Images by Learning an Implicit Function
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Recovering detailed facial geometry from a set of calibrated multi-view images is valuable for its wide range of applications. Traditional multi-view stereo (MVS) methods adopt an optimization-based scheme to regularize the matching cost. Recently, learning-based methods integrate all these into an end-to-end neural network and show superiority of efficiency. In this paper, we propose a novel architecture to recover extremely detailed 3D faces within dozens of seconds. Unlike previous learning-based methods that regularize the cost volume via 3D CNN, we propose to learn an implicit function for regressing the matching cost. By fitting a 3D morphable model from multi-view images, the features of multiple images are extracted and aggregated in the mesh-attached UV space, which makes the implicit function more effective in recovering detailed facial shape. Our method outperforms SOTA learning-based MVS in accuracy by a large margin on the FaceScape dataset. The code and data are released in https://github.com/zhuhao-nju/mvfr.