论文标题
通过顺序深度学习探索COVID-19进展预测的纵向咳嗽,呼吸和语音数据:模型开发和验证
Exploring Longitudinal Cough, Breath, and Voice Data for COVID-19 Progression Prediction via Sequential Deep Learning: Model Development and Validation
论文作者
论文摘要
最近的工作表明,在筛选Covid-19中使用音频数据(例如,咳嗽,呼吸和语音)的潜力。但是,这些方法仅着眼于一次性检测并在当前的音频样本中检测感染,但不能监测19.19中的疾病进展。已经提出了有限的探索,可以通过纵向音频数据不断监测COVID-19的进展,尤其是恢复。跟踪疾病进展特征可能会导致更及时的治疗。 这项研究的主要目的是探索纵向音频样品随着时间的流逝的潜力,以进行共同19的进展预测,尤其是使用顺序深度学习技术的恢复趋势预测。 分析了5-385天内的212名个人,包括呼吸,咳嗽和语音样本,包括呼吸音频数据。我们使用封闭式复发单元(GRU)开发了一种深度学习的跟踪工具,通过探索个人历史音频生物标志物的音频动态来检测COVID-19的进展。该研究包括2个部分:(1)在正面和阴性(健康)测试方面进行检测,以及(2)随着时间的流逝,纵向疾病进展预测,就阳性测试的概率而言。 与不利用纵向动力学的方法相比,COVID-19检测的强烈性能,产生的AUROC为0.79,灵敏度为0.75和0.71的特异性支持了该方法的有效性。我们进一步研究了预测的疾病进展轨迹,与测试队列中的测试结果相关性高0.75,在报告恢复的一部分中的相关性为0.86。我们的发现表明,通过纵向音频数据监测COVID-19的进化在跟踪个体的疾病进展和康复方面具有潜力。
Recent work has shown the potential of using audio data (eg, cough, breathing, and voice) in the screening for COVID-19. However, these approaches only focus on one-off detection and detect the infection given the current audio sample, but do not monitor disease progression in COVID-19. Limited exploration has been put forward to continuously monitor COVID-19 progression, especially recovery, through longitudinal audio data. Tracking disease progression characteristics could lead to more timely treatment. The primary objective of this study is to explore the potential of longitudinal audio samples over time for COVID-19 progression prediction and, especially, recovery trend prediction using sequential deep learning techniques. Crowdsourced respiratory audio data, including breathing, cough, and voice samples, from 212 individuals over 5-385 days were analyzed. We developed a deep learning-enabled tracking tool using gated recurrent units (GRUs) to detect COVID-19 progression by exploring the audio dynamics of the individuals' historical audio biomarkers. The investigation comprised 2 parts: (1) COVID-19 detection in terms of positive and negative (healthy) tests, and (2) longitudinal disease progression prediction over time in terms of probability of positive tests. The strong performance for COVID-19 detection, yielding an AUROC of 0.79, a sensitivity of 0.75, and a specificity of 0.71 supported the effectiveness of the approach compared to methods that do not leverage longitudinal dynamics. We further examined the predicted disease progression trajectory, displaying high consistency with test results with a correlation of 0.75 in the test cohort and 0.86 in a subset of the test cohort who reported recovery. Our findings suggest that monitoring COVID-19 evolution via longitudinal audio data has potential in the tracking of individuals' disease progression and recovery.