论文标题

部分可观测时空混沌系统的无模型预测

Dynamical tuning of the chemical potential to achieve a target particle number in grand canonical Monte Carlo simulations

论文作者

Miles, Cole, Cohen-Stead, Benjamin, Bradley, Owen, Johnston, Steven, Scalettar, Richard, Barros, Kipton

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We present a method to facilitate Monte Carlo simulations in the grand canonical ensemble given a target mean particle number. The method imposes a fictitious dynamics on the chemical potential, to be run concurrently with the Monte Carlo sampling of the physical system. Corrections to the chemical potential are made according to time-averaged estimates of the mean and variance of the particle number, with the latter being proportional to thermodynamic compressibility. We perform a variety of tests, and in all cases find rapid convergence of the chemical potential -- inexactness of the tuning algorithm contributes only a minor part of the total measurement error for realistic simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源