论文标题

由空间本地化增益支持的基本和涡流耗散二子孤子

Fundamental and vortex dissipative quadratic solitons supported by spatially localized gain

论文作者

Lobanov, Valery E., Kalinovich, Aleksey A., Borovkova, Olga V., Malomed, Boris A.

论文摘要

我们考虑具有稳定的二维(2D)耗散孤子的设置,其在光学介质中具有零和非零涡度,具有二次介质($χ^{(2)} $)非线性。为了补偿系统的基本频率(FF)和系统的第二谐波(SH)组件的空间均匀损失,包括固定局部的放大区域(“热点”,HS),带有线性增益,包括在FF组件上作用于FF组件或SH。在这两种情况下,高斯径向增益曲线都支持固定在HS上的稳定基本耗散孤子。 2D孤子的存在和稳定域的结构相当复杂。他们展示了值得注意的特征,例如双重性和自发对称性破坏。作用在FF组件上的环形增益曲线支持稳定的涡旋孤子,其绕组数高达5,而多孔。观察到增益值的生长或拉伸增益曲线的涡流曲线的非平凡转化。

We consider settings providing the existence of stable two-dimensional (2D) dissipative solitons with zero and nonzero vorticity in optical media with the quadratic ($χ^{(2)}$) nonlinearity. To compensate the spatially uniform loss in both the fundamental-frequency (FF) and second-harmonic (SH) components of the system, a strongly localized amplifying region ("hot spot",HS), carrying the linear gain, is included, acting onto either the FF component or SH one. In both cases, the Gaussian radial gain profile supports stable fundamental dissipative solitons pinned to the HS. The structure of existence and stability domains for the 2D solitons is rather complex. They demonstrate noteworthy features, such as bistability and spontaneous symmetry breaking. A ring-shaped gain profile acting onto the FF component supports stable vortex solitons, with the winding number up to 5, and multipoles. Nontrivial transformation of vortex-soliton profiles upon either growth of the gain value or stretching the gain profile is observed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源