论文标题
对称的费米预测和基塔夫的表格:低维度的物质拓扑阶段
Symmetric Fermi projections and Kitaev's table: topological phases of matter in low dimensions
论文作者
论文摘要
我们回顾了基塔耶夫(Kitaev)的著名“周期表”,以了解凝结物质的拓扑阶段,这些阶段识别出较差的周期性量子系统的基态(费米预测),直到连续变形。我们研究了依赖于周期性晶体动量的投影家族,并尊重表征各种拓扑绝缘子的对称性。我们的目的是以系统,明确和建设性的方式对此类家庭进行分类:我们确定所有对称类别的数值指数,并提供算法以变形指标同意的预测家庭。为了简单起见,我们说明了0和1维系统的方法,并恢复了Kitaev等人提出的(弱和强)拓扑不变的。
We review Kitaev's celebrated "periodic table" for topological phases of condensed matter, which identifies ground states (Fermi projections) of gapped periodic quantum systems up to continuous deformations. We study families of projections which depend on a periodic crystal momentum and respect the symmetries that characterize the various classes of topological insulators. Our aim is to classify such families in a systematic, explicit, and constructive way: we identify numerical indices for all symmetry classes and provide algorithms to deform families of projections whose indices agree. Aiming at simplicity, we illustrate the method for 0- and 1-dimensional systems, and recover the (weak and strong) topological invariants proposed by Kitaev and others.