论文标题
量子通道参数估计的限制
Limits on Parameter Estimation of Quantum Channels
论文作者
论文摘要
本文的目的是开发一个理论框架来研究量子通道的参数估计。我们研究了在顺序设置中估计在通道中编码的未知参数的任务。顺序策略是多次使用通道的最通用方法。我们的目标是在估计误差上建立下限(称为CRAMER-RAO界限)。我们开发的界限普遍适用;即,它们适用于所有允许的量子动力学。我们考虑使用催化剂来增强通道估计策略的功能。这称为摊销。通道进行参数估计的功率由其Fisher信息确定。因此,我们研究催化剂量子状态可以通过定义摊销的Fisher信息来增强通道的渔民信息。我们通过证明对于某些Fisher信息数量,催化剂状态与平行估计协议相比,催化剂状态并不能提高催化剂状态的性能。此的技术术语是摊销崩溃。我们使用它同时估算一个参数或多个参数时建立界限。我们的界限普遍应用,我们也将其视为优化问题。对于单个参数案例,我们使用对称对数衍生物(SLD)Fisher信息和正确的对数衍生物(RLD)Fisher信息来建立通用量子通道的界限。同时估算多个参数的任务比单个参数情况更重要,因为cramer-rao边界采用矩阵不等式的形式。我们使用RLD Fisher信息建立了一个标量CRAMER-RAO,用于多参数频道估计。对于单个和多参数估计,我们使用基于RLD的界限为所谓的Heisenberg缩放提供了无关条件。
The aim of this thesis is to develop a theoretical framework to study parameter estimation of quantum channels. We study the task of estimating unknown parameters encoded in a channel in the sequential setting. A sequential strategy is the most general way to use a channel multiple times. Our goal is to establish lower bounds (called Cramer-Rao bounds) on the estimation error. The bounds we develop are universally applicable; i.e., they apply to all permissible quantum dynamics. We consider the use of catalysts to enhance the power of a channel estimation strategy. This is termed amortization. The power of a channel for a parameter estimation is determined by its Fisher information. Thus, we study how much a catalyst quantum state can enhance the Fisher information of a channel by defining the amortized Fisher information. We establish our bounds by proving that for certain Fisher information quantities, catalyst states do not improve the performance of a sequential estimation protocol compared to a parallel one. The technical term for this is an amortization collapse. We use this to establish bounds when estimating one parameter, or multiple parameters simultaneously. Our bounds apply universally and we also cast them as optimization problems. For the single parameter case, we establish bounds for general quantum channels using both the symmetric logarithmic derivative (SLD) Fisher information and the right logarithmic derivative (RLD) Fisher information. The task of estimating multiple parameters simultaneously is more involved than the single parameter case, because the Cramer-Rao bounds take the form of matrix inequalities. We establish a scalar Cramer-Rao bound for multiparameter channel estimation using the RLD Fisher information. For both single and multiparameter estimation, we provide a no-go condition for the so-called Heisenberg scaling using our RLD-based bound.