论文标题

学习零拍学习的语义歧义

Learning Semantic Ambiguities for Zero-Shot Learning

论文作者

Hanouti, Celina, Borgne, Hervé Le

论文摘要

零射击学习(ZSL)旨在识别培训时没有视觉样本的课程。为了解决这个问题,可以依靠每个类的语义描述。一个典型的ZSL模型可以在可见类的视觉样本和相应的语义描述之间学习映射,以便在测试时对看不见的类进行相同的作用。艺术的方法依赖于生成模型,这些模型可以从类的原型中综合视觉特征,从而可以以监督的方式学习分类器。但是,这些方法通常偏向于看到的类,其视觉实例是唯一可以与给定类原型匹配的类型。我们提出了一种正规化方法,可以通过仅利用语义类原型来应用于任何有条件的基于生成的ZSL方法。它学会了为可能在训练时不可用的语义描述综合判别特征,这是看不见的。在文献中常用的四个数据集中评估了该方法的ZSL和GZSL,无论是在归纳和转导设置中,其结果是在PAR或高于最新的方法中。

Zero-shot learning (ZSL) aims at recognizing classes for which no visual sample is available at training time. To address this issue, one can rely on a semantic description of each class. A typical ZSL model learns a mapping between the visual samples of seen classes and the corresponding semantic descriptions, in order to do the same on unseen classes at test time. State of the art approaches rely on generative models that synthesize visual features from the prototype of a class, such that a classifier can then be learned in a supervised manner. However, these approaches are usually biased towards seen classes whose visual instances are the only one that can be matched to a given class prototype. We propose a regularization method that can be applied to any conditional generative-based ZSL method, by leveraging only the semantic class prototypes. It learns to synthesize discriminative features for possible semantic description that are not available at training time, that is the unseen ones. The approach is evaluated for ZSL and GZSL on four datasets commonly used in the literature, either in inductive and transductive settings, with results on-par or above state of the art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源